Wednesday, Feb. 8, 2006PHYS 1444-501, Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #7 Wednesday, Feb. 8, 2006 Dr. Jaehoon Yu Equi-potential.

Slides:



Advertisements
Similar presentations
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Advertisements

1/29/07184 Lecture 121 PHY 184 Spring 2007 Lecture 12 Title: Capacitor calculations.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Wednesday, Sept. 28, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #9 Wednesday, Sept. 28, 2005 Dr. Jaehoon Yu Quiz Results.
Electric Potential Chapter 23 opener. We are used to voltage in our lives—a 12-volt car battery, 110 V or 220 V at home, 1.5 volt flashlight batteries,
February 16, 2010 Potential Difference and Electric Potential.
Tuesday, Oct. 4, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #11 Tuesday, Oct. 4, 2011 Dr. Jaehoon Yu Capacitors in Series.
Capacitance and Dielectrics AP Physics C. Commercial Capacitor Designs Section
Capacitance Definition Parallel Plate Capacitors Cylindrical Capacitor
Physics 1502: Lecture 6 Today’s Agenda Announcements: –Lectures posted on: –HW assignments, solutions.
1 Lecture 5 Capacitance Ch. 25 Cartoon - Capacitance definition and examples. Opening Demo - Discharge a capacitor Warm-up problem Physlet Topics Capacitance.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage
Electrical Energy and Capacitance
Wednesday, Feb. 15, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #9 Wednesday, Feb. 15, 2006 Dr. Jaehoon Yu Molecular.
EXERCISES Try roughly plotting the potential along the axis for some of the pairs Exercises on sheet similar to this.
Copyright © 2009 Pearson Education, Inc. Various Capacitors Chapter 24 : Capacitance & Dielectrics. (in the book by Giancoli). Chapter 26 in our book.
Tuesday, June 19, PHYS 1444 Dr. Andrew Brandt PHYS 1444 Lecture #5 Tuesday June 19, 2012 Dr. Andrew Brandt Short review Chapter 24 Capacitors and.
Monday, Feb. 13, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #8 Monday, Feb. 13, 2012 Dr. Jae Yu Chapter Chapter 23.
Lecture 8-1 High Electric Field at Sharp Tips Two conducting spheres are connected by a long conducting wire. The total charge on them is Q = Q 1 +Q 2.
Monday, Sept. 26, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #8 Monday, Sept. 26, 2005 Dr. Jaehoon Yu Capacitors Determination.
1 Electric Potential Reading: Chapter 21 Chapter 21.
Chapter 24 Capacitance, Dielectrics, Electric Energy Storage.
Wednesday, Feb. 15, 2012 PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #9 Wednesday, Feb. 15, 2012 Dr. Jae Yu Capacitors.
Capacitance Chapter 25 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Electric Energy and Capacitance
Monday, Jan. 30, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #4 Monday, Jan. 30, 2012 Dr. Jaehoon Yu Chapter 21 –Electric.
Wednesday, Feb. 1, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #5 Wednesday, Feb. 1, 2012 Dr. Jaehoon Yu Chapter 22.
Weds., Jan. 29, 2014PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #5 Wednesday January 29, 2014 Dr. Andrew Brandt CH 17 Electric Potential.
Wednesday, Sept. 7, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #3 Monday, Sept. 7, 2005 Dr. Jaehoon Yu Motion of a.
Wednesday, Jan. 31, PHYS , Spring 2007 Dr. Andrew Brandt PHYS 1444 – Section 004 Lecture #4 Gauss’ Law Gauss’ Law with many charges What.
Tuesday, Sept. 13, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #7 Tuesday, Sept. 13, 2011 Dr. Jaehoon Yu Chapter 22.
Thursday, Sept. 22, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #10 Thursday, Sept. 22, 2011 Dr. Jaehoon Yu Chapter 23.
Capacitanc e and Dielectrics AP Physics C Montwood High School R. Casao.
Obtaining Electric Field from Electric Potential Assume, to start, that E has only an x component Similar statements would apply to the y and z.
Static Electricity, Electric Forces, Electric Fields, Electric Potential Energy, Electric Potential, Capacitors.
Monday, Feb. 13, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #8 Monday, Feb. 13, 2006 Dr. Jaehoon Yu Capacitors and.
Wednesday, Sept. 21, 2005PHYS , Fall 2005 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #7 Wednesday, Sept. 21, 2005 Dr. Jaehoon Yu Electric.
1 PHYS 1444 Lecture #4 Chapter 23: Potential Shape of the Electric Potential V due to Charge Distributions Equi-potential Lines and Surfaces Electric Potential.
Monday Feb. 3, 2014PHYS , Dr. Andrew Brandt 1 PHYS 1442 – Section 004 Lecture #6 Monday February 3, 2014 Dr. Andrew Brandt CH 17 Capacitance Dielectrics.
Chapter 23 Electric Potential. Basics The potential due to an electric dipole is just the sum of the potentials due to each charge, and can be calculated.
CHAPTER 26 : CAPACITANCE AND DIELECTRICS
Capacitance Chapter 25 Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Copyright © 2009 Pearson Education, Inc. Chapter 23 Electric Potential.
Wednesday, Sep. 14, PHYS Dr. Andrew Brandt PHYS 1444 – Section 04 Lecture #5 Chapter 21: E-field examples Chapter 22: Gauss’ Law Examples.
Monday, June 10, 2013PHYS , Summer 2013 Dr. Jaehoon Yu 1 PHYS 1442 – Section 001 Lecture #5 Monday, June 10, 2013 Dr. Jaehoon Yu Chapter 17 –Electric.
Tuesday, Sept. 20, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #9 Tuesday, Sept. 20, 2011 Dr. Jaehoon Yu Chapter 23 Electric.
Weds. Feb. 28, 2007PHYS , Spring 2007 Dr. Andrew Brandt 1 PHYS 1444 – Section 004 Review #1 Wednesday Feb. 28, 2007 Dr. Andrew Brandt 1.Test Monday.
Wednesday, Feb. 8, 2012PHYS , Spring 2012 Dr. Jaehoon Yu 1 PHYS 1444 – Section 004 Lecture #7 Wednesday, Feb. 8, 2012 Dr. Alden Stradeling Chapter.
Thursday, Sept. 8, 2011PHYS , Fall 2011 Dr. Jaehoon Yu 1 PHYS 1444 – Section 003 Lecture #6 Thursday, Sept. 8, 2011 Dr. Jaehoon Yu Chapter 21 –Electric.
Capacitance Chapter 25. Capacitance A capacitor consists of two isolated conductors (the plates) with charges +q and -q. Its capacitance C is defined.
Chapter 13 Electric Energy and Capacitance. Electric Potential Energy The electrostatic force is a conservative force It is possible to define an electrical.
Wednesday, Sep. 20, PHYS Ian Howley PHYS 1444 – Section 003 Lecture #8 Thursday Sep. 20, 2012 Ian Howley Chapter 24 Capacitors and Capacitance.
Thursday, June 16, 2016PHYS , Summer 2016 Dr. Jaehoon Yu 1 PHYS 1441 – Section 001 Lecture #8 Friday, June 16, 2016 Dr. Jaehoon Yu Chapter 23 Electric.
PHYS 1441 – Section 001 Lecture #9
PHYS 1441 – Section 001 Lecture #8
PHYS 1444 – Section 501 Lecture #8
Capacitance & Dielectrics
PHYS 1444 – Section 501 Lecture #5
PHYS 1444 – Section 003 Lecture #9
PHYS 1442 – Section 001 Lecture #4
PHYS 1444 – Section 002 Lecture #10
PHYS 1444 – Section 002 Lecture #11
PHYS 1444 – Section 003 Lecture #8
PHYS 1444 – Section 002 Lecture #10
PHYS 1444 – Section 003 Lecture #7
PHYS 1444 – Section 002 Lecture #11
PHYS 1444 – Section 002 Lecture #9
Exercises on sheet similar to this
PHYS 1441 – Section 002 Lecture #10
PHYS 1444 – Section 02 Lecture #7
Presentation transcript:

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 1 PHYS 1444 – Section 501 Lecture #7 Wednesday, Feb. 8, 2006 Dr. Jaehoon Yu Equi-potential Lines and Surfaces Electric Potential Due to Electric Dipole E determined from V Electrostatic Potential Energy of a System of Charges Capacitors and Capacitance Today’s homework is #4, due 7pm, Thursday, Feb. 16!!

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 2 Announcements Distribution list –I still have 5 of you incommucado… A Large Cloud Chamber workshop –Date and time: 10am, this Saturday, Feb. 11 –Will build and operate a prototype chamber with all the new gadgets Quiz next Monday, Feb. 13 –Covers CH21 – CH 23 1 st term exam Wednesday, Feb. 22 –Covers CH21 – CH25 Reading assignments –CH23–9

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 3 A Cloud Chamber Image of A Cosmic Track

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 4 Equi-potential Surfaces Electric potential can be visualized using equipotential lines in 2-D or equipotential surfaces in 3-D Any two points on equipotential surfaces (lines) are on the same potential What does this mean in terms of the potential difference? –The potential difference between the two points on an equipotential surface is 0. How about the potential energy difference? –Also 0. What does this mean in terms of the work to move a charge along the surface between these two points? –No work is necessary to move a charge between these two points.

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 5 Equi-potential Surfaces An equipotential surface (line) must be perpendicular to the electric field. Why? –If there are any parallel components to the electric field, it would require work to move a charge along the surface. Since the equipotential surface (line) is perpendicular to the electric field, we can draw these surfaces or lines easily. There can be no electric field inside a conductor in static case, thus the entire volume of a conductor must be at the same potential. So the electric field must be perpendicular to the conductor surface. Point charges Parallel Plate Just like a topological map

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 6 Electric Potential due to Electric Dipoles What is an electric dipole? –Two equal point charge Q of opposite sign separated by a distance l and behaves like one entity: P=Q l The electric potential due to a dipole at a point p –We take V=0 at r=infinity The simple sum of the potential at P by the two charges is Since  r= l cos  and if r>> l, r>>  r, thus r~r+  r and V by a dipole at a distance r from the dipole

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 7 E Determined from V Potential difference between two points under the electric field is So in a differential form, we can write –What are dV and El?El? dV is the infinitesimal potential difference between two points separated by the distance dldl E l is the field component along the direction of dl.dl. Thus we can write the field component El El as The component of the electric field in any direction is equal to the negative rate of change of the electric potential as a function of distance in that direction.!! Physical Meaning?

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 8 E Determined from V The quantity dV/d l is called the gradient of V in a particular direction –If no direction is specified, the term gradient refers to the direction V changes most rapidly, and this would be the direction of the field vector E at that point. –So if E and dl dl are parallel to each other, If E is written as a function of x, y and z, l refers to x, y and z is the “partial derivative” of V with respect to x, with y and z held constant In vector form, is called the del or the gradient operator and is a vector operator.

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 9 Electrostatic Potential Energy Consider a point charge q is moved between points a and b where the electrostatic potentials due to other charges are Va Va and VbVb The change in electrostatic potential energy of q in the field by other charges is Now what is the electrostatic potential energy of a system of charges? –Let’s choose V=0 at r=infinity –If there are no other charges around, single point charge Q1 Q1 in isolation has no potential energy and is exerted on with no electric force

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 10 Electrostatic Potential Energy; Two charges If a second point charge Q2 Q2 is brought close to Q1 Q1 at the distance r 12, the potential due to Q1 Q1 at the position of Q2 Q2 is The potential energy of the two charges relative to V=0 at r=infinity is –This is the work that needs to be done by an external force to bring Q2 Q2 from infinity to a distance r 12 from Q1.Q1. –It is also a negative of the work needed to separate them to infinity.

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 11 Electrostatic Potential Energy; Three Charges So what do we do for three charges? Work is needed to bring all three charges together –Work needed to bring Q1 Q1 to a certain place without the presence of any charge is 0. –Work needed to bring Q2 Q2 to a distance to Q1 Q1 is –Work need to bring Q3 Q3 to a distance to Q1 Q1 and Q2 Q2 is So the total electrostatic potential of the three charge system is –What about a four charge system?

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 12 Electrostatic Potential Energy: electron Volt What is the unit of electrostatic potential energy? –Joules Joules is a very large unit in dealing with electrons, atoms or molecules in atomic scale problems For convenience a new unit, electron volt (eV), is defined –1 eV is defined as the energy acquired by a particle carrying the charge equal to that of an electron (q=e) when it moves across a potential difference of 1V. –How many Joules is 1 eV then? eV however is not a standard SI unit. You must convert the energy to Joules for computations. What is the speed of an electron with kinetic energy 5000eV?

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 13 Capacitors (or Condensers) What is a capacitor? –A device that can store electric charge –But does not let them flow through What does it consist of? –Usually consists of two conducting objects (plates or sheets) placed near each other without touching –Why can’t they touch each other? The charge will neutralize… Can you give some examples? –Camera flash, UPS, Surge protectors, binary circuits, etc… How is a capacitor different than a battery? –Battery provides potential difference by storing energy (usually chemical energy) while the capacitor stores charges but very little energy.

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 14 Capacitors A simple capacitor consists of a pair of parallel plates of area A separated by a distance d.d. –A cylindrical capacitors are essentially parallel plates wrapped around as a cylinder. How would you draw symbols for a capacitor and a battery? –Capacitor -||- –Battery (+) -|i- (-) Circuit Diagram

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 15 What do you think will happen if a battery is connected ( or the voltage is applied) to a capacitor? –The capacitor gets charged quickly, one plate positive and the other negative in equal amount. Each battery terminal, the wires and the plates are conductors. What does this mean? –All conductors are at the same potential. And? –So the full battery voltage is applied across the capacitor plates. So for a given capacitor, the amount of charge stored in the capacitor is proportional to the potential difference V ba between the plates. How would you write this formula? –C is a proportionality constant, called capacitance of the device. –What is the unit? Capacitors C/VorFarad (F) C is a property of a capacitor so does not depend on Q or V. Normally use  F or pF.

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 16 Determination of Capacitance C can be determined analytically for capacitors w/ simple geometry and air in between. Let’s consider a parallel plate capacitor. –Plates have area A each and separated by d. d is smaller than the length, and so E is uniform. –E for parallel plates is E=  0,  is the surface charge density. E and V are related Since we take the integral from lower potential point a to higher potential point b along the field line, we obtain So from the formula: –What do you notice? C only depends on the area and the distance of the plates and the permittivity of the medium between them.

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 17 Example 24 – 1 Capacitor calculations: (a) Calculate the capacitance of a capacitor whose plates are 20cmx3.0cm and are separated by a 1.0mm air gap. (b) What is the charge on each plate if the capacitor is connected to a 12-V battery? (c) What is the electric field between the plates? (d) Estimate the area of the plates needed to achieve a capacitance of 1F, given the same air gap. (a) Using the formula for a parallel plate capacitor, we obtain (b) From Q=CV, the charge on each plate is

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 18 Example 24 – 1 (C) Using the formula for the electric field in two parallel plates (d) Solving the capacitance formula for A, we obtain Or, sincewe can obtain Solve for A About 40% the area of Arlington (256km 2 ).

Wednesday, Feb. 8, 2006PHYS , Spring 2006 Dr. Jaehoon Yu 19 Example 24 – 3 Spherical capacitor: A spherical capacitor consists of two thin concentric spherical conducting shells, of radius ra ra and r b, as in the figure. The inner shell carries a uniformly distributed charge Q on its surface and the outer shell and equal but opposite charge –Q. Determine the capacitance of the two shells. Using Gauss’ law, the electric field outside a uniformly charged conducting sphere is So the potential difference between a and b is Thus capacitance is