Net Ionic Equations An Application of Double Replacement Reactions.

Slides:



Advertisements
Similar presentations
Reactions in Aqueous Solutions
Advertisements

Precipitation Reactions Graphic: Wikimedia Commons User Tubifex.
Precipitation Reactions Graphic: Wikimedia Commons User Tubifex.
Ionic Equations Deriving TOTAL and NET ionic equations from molecular equations.
Net Ionic Equations.
1 Ionic Equations.... What’s really swimming around. And what’s not swimming around.
Precipitate Reactions L.O. I can state which are spectator ions in a precipitation reaction. I can make a clean dry precipitate and write the ionic equation.
Solutions and Solubility
Aqueous Reactions and Solution Stoichiometry. Aqueous Solutions Aqueous solutions are solutions in which water does the dissolving. –Solute – material.
AgNO 3 (aq) + NaCl(aq) AgCl(s) + NaNO 3 (aq) What happens when you put AgNO 3 and NaCl in water?
Net Ionic Equations An Application of Double Replacement Reactions.
Notes on Total and Net Ionic Equations. Ionic Compounds (Metal and Nonmetal) (Cation and Anion) If soluble these compounds will DISSOLVE and DISSOCIATE.
Solubility Rules and Precipitation Reactions. Not all ionic compounds dissolve! Instead of doing experiments all the time to see which ones will dissolve,
Precipitation Reactions. Double Replacement Reactions The ions of two compounds exchange places in an aqueous solution to form two new compounds. AX +
Objectives To learn more about some of the results of chemical reactions To learn to predict the solid that forms in a precipitation reaction To learn.
 The ability to dissolve or break down into its component ions in a liquid  Example:  NaCl is soluble  Completely dissolves in water  AgCl is insoluble.
Chemical Reactions 9.3: Reactions in Aqueous Solutions.
Unit 2 - Chemical Reactions. Double displacement occurs between ions in aqueous solution. A reaction will occur when a pair of ions come together to produce.
Precipitates and Solubility
Topic: Reactions in Aqueous Solution Do Now: Label the following at (aq) or (s) 1. NaBr 2. PbNO 3 3. KOH 4. CuSO 4 5. Ba 2 S.
Net Ionic Equations Review Grade lab reports Notes on Net ionic equations Guided Practice Homework.
Daily Science January 13 Predict the products of the following reactions and balance them:  C 3 H 8 + O 2   Sodium and nitrogen react  Calcium Fluoride.
 DO NOW:  1. Watch the following video  2. Write your observations  3. Predict the products of AgNO 3 and NaCl.
The Life of Ions An Introduction to Ions and how they behave chemically: Characteristics of ions & ionic compounds Ionic Bonding Dissolution Balancing.
Precipitation Reactions. Solution Chemistry It is helpful to pay attention to exactly what species are present in a reaction mixture (i.e., solid, liquid,
Reactions in Aqueous Solution
Soluble or Insoluble: General Solubility Guidelines Many factors affect solubility so predicting solubility is neither straightforward nor simple. The.
Chapter 6: Chemical Reactions.  Predict and write equations for precipitation reactions.  Write molecular, complete ionic, and net ionic equations.
7.5 Aqueous Solutions and Solubility: Compounds Dissolved in Water A compound is soluble in a particular liquid if it dissolves in that liquid. A compound.
Aqueous Solutions Some solutes exist as molecules when dissolved in water (sugar, ethanol) Many solutes dissociate or form ions in water Acids form H +
Precipitate Formation: Formation of Lead (II) Iodide When mixed, two clear solutions produce a dense yellow precipitate.
2NaBr(aq) + Pb(OH)2(aq)  PbBr2(s) + 2NaOH(aq)
Solubility Rules. The terms soluble and insoluble are relative terms. soluble insoluble solute Solubility: the maximum amount of solute needed to make.
Chapter 4; Reactions in Aqueous Solutions I.Electrolytes vs. NonElectrolytes II.Precipitation Reaction a)Solubility Rules.
Predicting Ionic Solubility Precipitation Formation.
4.5 Precipitation Reactions
What is the importance of expressing a net ionic equation?
Predicting solubility. Pb(NO 3 ) 2 (aq) + 2 KI(aq)  PbI 2 (s) + 2KNO 3 (aq) overall ionic equation, which separates all the ions out: Pb 2+ (aq) + 2.
Chapter 4-3 Chemical Quantities and
Water: removing dissolved solutes Chapter 12. Precipitation Reactions When two solutions are mixed, an insoluble compound sometimes forms. When two solutions.
Aqueous Reactions and Solution Stoichiometry
Reactions in Aqueous Solution:. Double Replacement Reactions AB + CD  AD + CB AB + CD  AD + CB.
Precipitation Reactions
Ionic Equations Most ionic compound dissociate (or break apart) when dissolved in water to form its component ions For example: NaCl (aq) really looks.
Net ionic equations Na + Al 3+ S 2– 2Ca 2+ PO 4 3– 3Cl –
Net Ionic Equations Continued!
Double Displacement Reactions
General, Organic, and Biological Chemistry Copyright © 2010 Pearson Education, Inc. 1 Chapter 8 Solutions 8.3 Solubility.
Ionic Equations. Net Ionic Equations AgNO 3 (aq) + NaCl(aq) AgCl(s) + NaNO 3 (aq) What happens when you put AgNO 3 and NaCl in water?
Chemistry I Honors Solutions Lesson #5 Reactions in Aqueous Phase.
Solutions, Electrolytes, and Precipitation Reactions.
11.3 Reactions in Aqueous Solution 1 > Chapter 11 Chemical Reactions 11.1 Describing Chemical Reactions 11.2 Types of Chemical Reactions 11.3 Reactions.
Pick up a Packet and write down the following Essential Question: How are precipitation reactions written and how is a compound determined to be soluble.
Precipitation Reactions (Reactions that form a precipitate)
Precipitation Reactions & Solubility Rules Thursday, February 18 th, 2016.
Representing Aqueous Ionic Reactions With Net Ionic Reactions.
Reactionsin solutions. Precipitation reactions  When solutions of certain ionic compounds are mixed and the ions come in contact with one another, the.
Precipitation Reactions
Topic 9.1 Solutions.
Replacement Reactions
Precipitation Reactions
4. 2 Continued… Writing Net Ionic Equations Learning Goals: 1
Chemistry – Feb 21, 2019 _____Pb(NO3)2  _____PbO + _____NO2 + _____O2
Ionic Equations.
4. 2 Continued… Writing Net Ionic Equations Learning Goals: 1
Solubility and Precipitation Rules
Precipitation Reactions
What happens when you put
Precipitation Reactions Pages
Presentation transcript:

Net Ionic Equations An Application of Double Replacement Reactions

Introduction We know that double replacement reactions result in the formation of either - a precipitate, or an insoluble gas, or water

Introduction We know that double replacement reactions result in the formation of either - a precipitate, or an insoluble gas, or water Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) “An aqueous solution of lead(II) nitrate is mixed with an aqueous solution of potassium iodide and results in the formation of solid lead(II) iodide and an aqueous solution of potassium nitrate.”

Ions in Solution Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Let’s look at what happens when we make the two starting solutions - Pb(NO 3 ) 2 (s) → Pb 2+ (aq) + 2 NO 3 − (aq) KI(s) → K + (aq) + I − (aq) Our solutions are actually composed of the ions in solution. When we write “Pb(NO 3 ) 2 (aq)” we really mean “Pb 2+ (aq) + 2 NO 3 − (aq)” H2OH2O H2OH2O

Ions in Solution Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 KNO 3 (aq)

Ions in Solution Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 KNO 3 (aq) The PbI 2 (s) is a solid and is not in solution - we don’t have separated ions

Ions in Solution Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 KNO 3 (aq) The PbI 2 (s) is a solid and is not in solution - we don’t have separated ions The KNO 3 (aq) is in solution and represents solvated ions - KNO 3 (aq) → K + (aq) + NO 3 − (aq) H2OH2O

Ions in Solution Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 K + (aq) + 2 NO 3 − (aq) The PbI 2 (s) is a solid and is not in solution - we don’t have separated ions The KNO 3 (aq) is in solution and represents solvated ions - KNO 3 (aq) → K + (aq) + NO 3 − (aq) H2OH2O

Ionic Equations Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 K + (aq) + 2 NO 3 − (aq)

Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 K + (aq) + 2 NO 3 − (aq) This is called the “complete ionic equation” We have all the ionic species on both sides of the arrow Ionic Equations

Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 K + (aq) + 2 NO 3 − (aq) This is called the “complete ionic equation” If we look carefully at the equation, we will see compounds that are the same on both sides Ionic Equations

Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 K + (aq) + 2 NO 3 − (aq) This is called the “complete ionic equation” If we look carefully at the equation, we will see compounds that are the same on both sides 2 NO 3 − (aq) Ionic Equations

Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 K + (aq) + 2 NO 3 − (aq) This is called the “complete ionic equation” If we look carefully at the equation, we will see compounds that are the same on both sides 2 NO 3 − (aq) Ionic Equations

Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 K + (aq) + 2 NO 3 − (aq) This is called the “complete ionic equation” If we look carefully at the equation, we will see compounds that are the same on both sides 2 NO 3 − (aq) and 2 K + (aq) Ionic Equations

Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 K + (aq) + 2 NO 3 − (aq) This is called the “complete ionic equation” If we look carefully at the equation, we will see compounds that are the same on both sides 2 NO 3 − (aq) and 2 K + (aq) Ionic Equations

Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 K + (aq) + 2 NO 3 − (aq) This is called the “complete ionic equation” If we look carefully at the equation, we will see compounds that are the same on both sides 2 NO 3 − (aq) and 2 K + (aq) These are called “spectator ions” Ionic Equations

Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 K + (aq) + 2 NO 3 − (aq) This is called the “complete ionic equation” Spectator ions don’t participate in the reaction They hang around and watch Ionic Equations

Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 NO 3 − (aq) + 2 K + (aq) + 2 I − (aq) → PbI 2 (s) + 2 K + (aq) + 2 NO 3 − (aq) If we remove the spectator ions from the equation... Ionic Equations

Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 I − (aq) → PbI 2 (s) If we remove the spectator ions from the equation... Ionic Equations

Pb(NO 3 ) 2 (aq) + 2 KI(aq) → PbI 2 (s) + 2 KNO 3 (aq) Now, we can write the equation as a mixture of solvated ions - Pb 2+ (aq) + 2 I − (aq) → PbI 2 (s) If we remove the spectator ions from the equation, we end up with an equation that has only the reacting species. This is called the “net ionic equation” Ionic Equations

Example 1: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: BaCl 2 (aq) + Na 2 SO 4 (aq) → BaSO 4 (s) + 2 NaCl(aq) Applications

Example 1: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: BaCl 2 (aq) + Na 2 SO 4 (aq) → BaSO 4 (s) + 2 NaCl(aq) Ions in solution: Ba 2+ (aq) + 2 Cl − (aq) + 2 Na + (aq) + SO 4 2− (aq) Applications

Example 1: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: BaCl 2 (aq) + Na 2 SO 4 (aq) → BaSO 4 (s) + 2 NaCl(aq) Ions in solution: Ba 2+ (aq) + 2 Cl − (aq) + 2 Na + (aq) + SO 4 2− (aq) Ions on both sides of the arrow: 2 Cl − (aq) + 2 Na + (aq) Applications

Example 1: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: BaCl 2 (aq) + Na 2 SO 4 (aq) → BaSO 4 (s) + 2 NaCl(aq) Ions in solution: Ba 2+ (aq) + 2 Cl − (aq) + 2 Na + (aq) + SO 4 2− (aq) Ions on both sides of the arrow: 2 Cl − (aq) + 2 Na + (aq) Applications These are the spectator ions

Example 1: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: BaCl 2 (aq) + Na 2 SO 4 (aq) → BaSO 4 (s) + 2 NaCl(aq) Complete Ionic Equation: Ba 2+ (aq) + 2 Cl − (aq) + 2 Na + (aq) + SO 4 2− (aq) → BaSO 4 (s) + 2 Na + (aq) +2 Cl − (aq) Applications

Example 1: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: BaCl 2 (aq) + Na 2 SO 4 (aq) → BaSO 4 (s) + 2 NaCl(aq) Complete Ionic Equation: Ba 2+ (aq) + 2 Cl − (aq) + 2 Na + (aq) + SO 4 2− (aq) → BaSO 4 (s) + 2 Na + (aq) +2 Cl − (aq) Net Ionic Equation: Ba 2+ (aq) + SO 4 2− (aq) → BaSO 4 (s) Applications

Example 1: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: BaCl 2 (aq) + Na 2 SO 4 (aq) → BaSO 4 (s) + 2 NaCl(aq) Complete Ionic Equation: Ba 2+ (aq) + 2 Cl − (aq) + 2 Na + (aq) + SO 4 2− (aq) → BaSO 4 (s) + 2 Na + (aq) +2 Cl − (aq) Net Ionic Equation: Ba 2+ (aq) + SO 4 2− (aq) → BaSO 4 (s) Spectator Ions: Na + (aq) and Cl − (aq) Applications

Example 2: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: AgClO 4 (aq) + NaCl(aq) → AgCl(s) + NaClO 4 (aq) Applications

Example 2: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: AgClO 4 (aq) + NaCl(aq) → AgCl(s) + NaClO 4 (aq) Ions in solution: Ag + (aq) + ClO 4 − (aq) + Na + (aq) + Cl − (aq) Applications

Example 2: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: AgClO 4 (aq) + NaCl(aq) → AgCl(s) + NaClO 4 (aq) Ions in solution: Ag + (aq) + ClO 4 − (aq) + Na + (aq) + Cl − (aq) Ions on both sides of the arrow: ClO 4 − (aq) + Na + (aq) Applications

Example 2: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: AgClO 4 (aq) + NaCl(aq) → AgCl(s) + NaClO 4 (aq) Ions in solution: Ag + (aq) + ClO 4 − (aq) + Na + (aq) + Cl − (aq) Ions on both sides of the arrow: ClO 4 − (aq) + Na + (aq) Applications These are the spectator ions

Example 2: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: AgClO 4 (aq) + NaCl(aq) → AgCl(s) + NaClO 4 (aq) Complete Ionic Equation: Ag + (aq) + ClO 4 − (aq) + Na + (aq) + Cl − (aq) → AgCl(s) + Na + (aq) + ClO 4 − (aq) Applications

Example 2: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: AgClO 4 (aq) + NaCl(aq) → AgCl(s) + NaClO 4 (aq) Complete Ionic Equation: Ag + (aq) + ClO 4 − (aq) + Na + (aq) + Cl − (aq) → AgCl(s) + Na + (aq) + ClO 4 − (aq) Net Ionic Equation: Ag + (aq) + Cl − (aq) → AgCl(s) Applications

Example 2: Write the complete ionic equation, the net ionic equation, and determine the spectator ions for the following equation: AgClO 4 (aq) + NaCl(aq) → AgCl(s) + NaClO 4 (aq) Complete Ionic Equation: Ag + (aq) + ClO 4 − (aq) + Na + (aq) + Cl − (aq) → AgCl(s) + Na + (aq) + ClO 4 − (aq) Net Ionic Equation: Ag + (aq) + Cl − (aq) → AgCl(s) Spectator Ions: Na + (aq) and ClO 4 − (aq) Applications

To write the complete ionic equation - separate all aqueous ionic compounds into their aqueous ions keep all solids, insoluble gases, and water together Summary

To write the complete ionic equation - separate all aqueous ionic compounds into their aqueous ions keep all solids, insoluble gases, and water together To find the spectator ions - find the aqueous ions that are the same on both sides of the arrow Summary

To write the complete ionic equation - separate all aqueous ionic compounds into their aqueous ions keep all solids, insoluble gases, and water together To find the spectator ions - find the aqueous ions that are the same on both sides of the arrow To write the net ionic equation - remove the spectator ions from the complete ionic equation Summary