ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 08, 2011 6.1.3, 6.1.4, 6.2, starting 6.3 © Dan Negrut, 2011 ME451,

Slides:



Advertisements
Similar presentations
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems: Chapter 6 November 1, 2011 © Dan Negrut, 2011 ME451, UW-Madison TexPoint fonts.
Advertisements

Kinetics (I) Review of Kinetics of Planar Mechanisms
ME751 Advanced Computational Multibody Dynamics Section 9.2 February 2, 2010 © Dan Negrut, 2010 ME751, UW-Madison “My own business always bores me to death;
ME751 Advanced Computational Multibody Dynamics Inverse Dynamics Equilibrium Analysis Various Odd Ends March 18, 2010 © Dan Negrut, 2010 ME751, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Relative Kinematic Constraints, Composite Joints – 3.3 October 4, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Cam-Follower Constraints – 3.3 Driving Constraints – 3.5 October 11, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME751 Advanced Computational Multibody Dynamics Section 9.2 February 9, 2010 © Dan Negrut, 2010 ME751, UW-Madison “In England, if you commit a crime, the.
Physics 111: Mechanics Lecture 09
Ch. 7: Dynamics.
Physics 430: Lecture 22 Rotational Motion of Rigid Bodies
Chapter 16 PLANE MOTION OF RIGID BODIES: FORCES AND ACCELERATIONS The relations existing between the forces acting on a rigid body, the shape and mass.
ME451 Kinematics and Dynamics of Machine Systems Initial Conditions for Dynamic Analysis Constraint Reaction Forces October 23, 2013 Radu Serban University.
ME451 Kinematics and Dynamics of Machine Systems Review of Elements of Calculus – 2.5 Vel. and Acc. of a Point fixed in a Ref Frame – 2.6 Absolute vs.
ME451 Kinematics and Dynamics of Machine Systems Review of Matrix Algebra – 2.2 Review of Elements of Calculus – 2.5 Vel. and Acc. of a point fixed in.
ME451 Kinematics and Dynamics of Machine Systems Review of Matrix Algebra – 2.2 September 13, 2011 Dan Negrut University of Wisconsin-Madison © Dan Negrut,
ME751 Advanced Computational Multibody Dynamics Section 9.2 January 28, 2010 © Dan Negrut, 2010 ME751, UW-Madison “Age is an issue of mind over matter.
Thursday, Oct. 23, 2014PHYS , Fall 2014 Dr. Jaehoon Yu 1 PHYS 1443 – Section 004 Lecture #17 Thursday, Oct. 23, 2014 Dr. Jaehoon Yu Torque & Vector.
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1 through 2.4 Th, Sept. 08 © Dan Negrut, 2011 ME451, UW-Madison TexPoint fonts.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Singular Configurations of Mechanisms 3.7 October 26, 2010 © Dan Negrut, 2010 ME451, UW-Madison TexPoint.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 11, , 6.1.4, 6.2, starting 6.3 © Dan Negrut, 2010 ME451,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 1, 2011 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2011.
ME 440 Intermediate Vibrations Th, March 26, 2009 Chapter 5: Vibration of 2DOF Systems © Dan Negrut, 2009 ME440, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1 through 2.4 Tu, Sept. 07 © Dan Negrut, 2009 ME451, UW-Madison TexPoint fonts.
ME751 Advanced Computational Multibody Dynamics Section 9.3 February 16, 2010 © Dan Negrut, 2010 ME751, UW-Madison “Courage is fear holding on a minute.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1, 2.2, 2.3 September 06, 2013 Radu Serban University of Wisconsin-Madison.
Plane Motion of Rigid Bodies: Forces and Accelerations
ME451 Kinematics and Dynamics of Machine Systems Vel. And Acc. of a Fixed Point in Moving Frame Basic Concepts in Planar Kinematics February.
ME451 Kinematics and Dynamics of Machine Systems Basic Concepts in Planar Kinematics 3.1, 3.2 September 18, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Generalized Forces 6.2 October 16, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Driving Constraints 3.5 October 19, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Introduction to Dynamics 6.1 October 09, 2013 Radu Serban University of Wisconsin-Madison.
MOMENT OF INERTIA Today’s Objectives: Students will be able to: 1.Determine the mass moment of inertia of a rigid body or a system of rigid bodies. In-Class.
ME451 Kinematics and Dynamics of Machine Systems Singular Configurations 3.7 October 07, 2013 Radu Serban University of Wisconsin-Madison.
ME 440 Intermediate Vibrations Tu, April 14, 2009 End Chapter 5: Vibration of 2DOF Systems Begin Chapter 6: Multi-degree of Freedom Systems © Dan Negrut,
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems March 31, , starting 6.3 © Dan Negrut, 2009 ME451, UW-Madison Quote.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 10, , starting 6.3 © Dan Negrut, 2011 ME451, UW-Madison TexPoint.
1 Dynamics Differential equation relating input torques and forces to the positions (angles) and their derivatives. Like force = mass times acceleration.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems May 07, 2009 EOM in non-Cartesian Reference Frames ~ not in textbook~ Quote.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 16, , starting 6.3 © Dan Negrut, 2010 ME451, UW-Madison TexPoint.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 6, 2011 Equilibrium Analysis & Inverse Dynamics Analysis ME451 Wrap.
ME451 Kinematics and Dynamics of Machine Systems
ME451 Kinematics and Dynamics of Machine Systems Relative Kinematic Constraints, Composite Joints – 3.3 October 6, 2011 © Dan Negrut, 2011 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 9, 2010 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2010.
Two-Dimensional Rotational Dynamics 8.01 W09D2 Young and Freedman: 1.10 (Vector Product), , 10.4, ;
ME451 Kinematics and Dynamics of Machine Systems Driving Constraints 3.5 Start Position, Velocity, and Acc. Analysis 3.6 February 26, 2009 © Dan Negrut,
ME451 Kinematics and Dynamics of Machine Systems Start Position, Velocity, and Acc. Analysis 3.6 October 21, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
ME 440 Intermediate Vibrations Tu, Feb. 3, 2009 Sections , © Dan Negrut, 2009 ME440, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Composite Joints – 3.3 Gears and Cam Followers – 3.4 October 5, 2010 © Dan Negrut, 2010 ME451, UW-Madison.
ME451 Kinematics and Dynamics of Machine Systems Newton-Euler EOM 6.1.2, October 14, 2013 Radu Serban University of Wisconsin-Madison.
ME451 Kinematics and Dynamics of Machine Systems Newton-Raphson Method 4.5 October 28, 2010 © Dan Negrut, 2010 ME451, UW-Madison TexPoint fonts used in.
ME 440 Intermediate Vibrations Th, April 2, 2009 Chapter 5: Vibration of 2DOF Systems © Dan Negrut, 2009 ME440, UW-Madison Quote of the Day: It is a miracle.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems March 26, , © Dan Negrut, 2009 ME451, UW-Madison.
Theoretical Mechanics DYNAMICS * Navigation: Right (Down) arrow – next slide Left (Up) arrow – previous slide Esc – Exit Notes and Recommendations:
Monday, Nov. 4, 2002PHYS , Fall 2002 Dr. Jaehoon Yu 1 PHYS 1443 – Section 003 Lecture #14 Monday, Nov. 4, 2002 Dr. Jaehoon Yu 1.Parallel Axis Theorem.
ME451 Kinematics and Dynamics of Machine Systems Review of Linear Algebra 2.1 through 2.4 Th, Jan. 22 © Dan Negrut, 2009 ME451, UW-Madison.
Chapter 17 Rigid Body Dynamics. Unconstrained Motion: 3 Equations for x, y, rotation.
ME451 Kinematics and Dynamics of Machine Systems Review of Elements of Calculus – 2.5 Vel and Acc of a Point fixed in a Ref Frame – 2.6 Jan. 29, 2009 ©
1 Angular Momentum Chapter 11 © 2012, 2016 A. Dzyubenko © 2004, 2012 Brooks/Cole © 2004, 2012 Brooks/Cole Phys 221
Two-Dimensional Rotational Dynamics 8.01 W09D2
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 4, 2010 Chapter 6 © Dan Negrut, 2010 ME451, UW-Madison TexPoint fonts.
ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems December 9, 2010 Solving Index 3 DAEs using Newmark Method © Dan Negrut, 2010.
ME751 Advanced Computational Multibody Dynamics
ENGINEERING MECHANICS
KINEMATIC CHAINS & ROBOTS (I)
Physics 319 Classical Mechanics
Presentation transcript:

ME451 Kinematics and Dynamics of Machine Systems Dynamics of Planar Systems November 08, , 6.1.4, 6.2, starting 6.3 © Dan Negrut, 2011 ME451, UW-Madison TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A AA A A A “If you're going through hell, keep going.” Winston Churchill

Before we get started… Last Time Started the derivation of the EOM for one planar rigid body Today Finish the derivation of the EOM Understand how the presence of a concentrated force factors into the EOM Look into inertia properties of 2D geometries Center of mass Parallel axis theorem Mass moment of inertia for composite geometries Miscellaneous Take-home component of the exam: you have one more week to complete it Now due on Nov. 17 ! should be a general purpose simEngine2D TA will hold lecture of Tu, Nov. 15: explain how to bridge the parsing and the equation formulation Please see me after class or tomorrow (Wd) during office hours if you think that your exam score doesn’t reflect your work 2

Deriving the EOM for One Rigid Body I want to derive this: 3

Notation & Nomenclature Matrix-vector notation for the expression of d’Alembert Principle: So what do I actually mean when I talk about “generalized forces”? ~ I mean the Q above ~ 4

Focusing on F and n… F was the sum of all distributed forces f (P) acting per unit mass: n was the torque produced by the forces f (P) QUESTION: What happens when we don’t only have distributed forces, such as f(P), at each point P on the body, but also a concentrated force acting at only *one* point P of the body? (Eq ) (Eq ) 5

Handling Concentrated Forces The fundamental idea : Whenever some new force shows up, figure out the virtual work that it brings into the picture Then account for this “injection” of virtual work in the virtual work balance equation: Caveat: Notice that for rigid bodies, the virtual displacements are  r and . Some massaging of the additional virtual work might be needed to bring it into the standard form, that is 6 (Keep this in mind when you solve Problem 6.2.1)

[Review of material from last lecture] Concentrated (Point) Force Setup: At a particular point P, you have a point-force F P acting on the body 7 Two step approach to handle concentrated force: Step A: write the virtual work produced by this force as a results of a virtual displacement of the body Step B: express the force F produced additional virtual work in terms of body virtual displacements Recall:

Concentrated (Point) Force [Review, cntd.] How is virtual work computed? How is the virtual displacement of point P computed? (we already know this…) 8 The critical step: expressing the displacement that the force goes through in terms of the body virtual displacements  r and  

9

End: Begin:

Inertia Properties of Rigid Bodies Issues discussed: Determining location of the center of mass (centroid) of a rigid body Parallel axis theorem Mass moment of inertia of composite bodies Location of centroid for a rigid body with a symmetry axis 11

Location of the Center of Mass By definition the centroid is that point of a body for which, when you place a reference frame at that point and compute a certain integral in relation to that reference frame, the integral vanishes: 12 Q: How can I determine the location of the center of mass?

Mass Moment of Inertia (MMI) The MMI was defined as: Suppose that the reference frame with respect to which the integral is computed is a centroidal RF You might ask yourself, what happens if I decide to evaluate the integral above with respect to a different reference frame, located at a different point attached to this body? Answer is provided by the parallel axis theorem (  is vector from centroidal reference frame to the new reference frame) : 13

MMI of a Composite Body Step 1: Compute the centroid of the composite body Step 2: For each sub-body, apply the parallel axis theorem to compute the MMI of that sub-body with respect to the newly computed centroid Note: if holes are present in the composite body, it’s ok to add and subtract material (this translates into positive and negative mass) 14

Location of the Center of Mass (Cntd.) What can one say if the rigid body has a symmetry axis? Here symmetry axis means that both mass and geometry are symmetric with respect to that axis You can say this: the centroid is somewhere along that axis 15 NOTE: if the rigid body has two axes of symmetry, the centroid is on each of them, and therefore is where they intersect

What’s Left ? 30,000 Feet Perspective Two important issues remain to be addressed: 1) Elaborate on the nature of the “concentrated forces” that we have introduced. A closer look at the nature of these “concentrated” forces reveals that they could be Forces coming out of translational spring-damper-actuator elements Forces coming out of rotational spring-damper-actuator elements Reaction forces (due to the presence of a constraint, say between body and ground) 2) We only derived the variational form of the equation of motion for the trivial case of *one* rigid body. How do I derive the variational form of the equations of motion for a mechanism with many components (bodies) connected through joints? Just like before, we’ll rely on the principle of virtual work Where are we going with this? Why do we need 1) and 2)? We have to formulate the equations that govern the time evolution of an arbitrary collection of rigid bodies interconnected by an arbitrary set of kinematic constraints. 16