Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
John E. Thomas Students: Joe Kinast, Bason Clancy,
Spectroscopy at the Particle Threshold H. Lenske 1.
Lectures in Istanbul Hiroyuki Sagawa, Univeristy of Aizu June 30-July 4, Giant Resonances and Nuclear Equation of States 2. Pairing correlations.
What Do High Tc Superconductors Teach Us About Ultracold Superfluids and Vice Versa? Fermi National Laboratory Jan 2007.
Probing Fluctuating Orders Luttinger Liquids to Psuedogap States Ashvin Vishwanath UC Berkeley With: Ehud Altman (Weizmann)and Ludwig Mathey (Harvard)
Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Universal Thermodynamics of a Unitary Fermi gas Takashi Mukaiyama University of Electro-Communications.
Sound velocity and multibranch Bogoliubov - Anderson modes of a Fermi superfluid along the BEC-BCS crossover Tarun Kanti Ghosh Okayama University, Japan.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
A. Perali, P. Pieri, F. Palestini, and G. C. Strinati Exploring the pseudogap phase of a strongly interacting Fermi gas Dipartimento.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
What Do Ultracold Fermi Superfluids Teach Us About Quark Gluon and Condensed Matter Wichita, Kansas March 2012.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Theory of interacting Bose and Fermi gases in traps
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Introduction to Ultracold Atomic Gases Qijin Chen.
November 12, 2009 | Christian Stahl | 1 Fermion-Fermion and Boson-Boson Interaction at low Temperatures Seminar “physics of relativistic heavy Ions” TU.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Interference of Two Molecular Bose-Einstein Condensates Christoph Kohstall Innsbruck FerMix, June 2009.
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Superfluidity in atomic Fermi gases Luciano Viverit University of Milan and CRS-BEC INFM Trento CRS-BEC inauguration meeting and Celebration of Lev Pitaevskii’s.
Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Quantum phase transition in an atomic Bose gas with Feshbach resonances M.W.J. Romans (Utrecht) R.A. Duine (Utrecht) S. Sachdev (Yale) H.T.C. Stoof (Utrecht)
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Eiji Nakano, Dept. of Physics, National Taiwan University Outline: 1)Experimental and theoretical background 2)Epsilon expansion method at finite scattering.
Unitarity potentials and neutron matter at unitary limit T.T.S. Kuo (Stony Brook) H. Dong (Stony Brook), R. Machleidt (Idaho) Collaborators:
Connecting two important issues in cold atoms-- Origin of strong interaction and Existence of itinerant Ferromagnetism 崔晓玲 清华大学高等研究院 兰州 Collaborator:
Ingrid Bausmerth Alessio Recati Sandro Stringari Ingrid Bausmerth Alessio Recati Sandro Stringari Chandrasekhar-Clogston limit in Fermi mixtures with unequal.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Stationary Josephson effect throughout the BCS-BEC crossover Pierbiagio Pieri (work done with Andrea Spuntarelli and Giancarlo C. Strinati) Dipartimento.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Measuring Entropy and Quantum Viscosity in a Strongly Interacting Atomic Fermi Gas Support: ARO NSF DOE NASA* John E. Thomas Ken O’Hara* Mike Gehm* Stephen.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
Quantum simulations with cold atoms: from solid-state to high-energy physics and cosmology Vladimir S. Melezhik Bogoliubov Laboratory of Theoretical Physics.
strongly interacting fermions: from spin mixtures to mixed species
Fermions on a Lattice in the Unitary Regime at Finite Temperatures
Spectroscopy of Superfluid Atomic Fermi Gases
Molecular Transitions in Fermi Condensates
What do we know about the state of
Fermions in the unitary regime at finite temperatures
Spectroscopy of ultracold bosons by periodic lattice modulations
Probes of Pairing in Strongly Interacting Fermions
Theory of RF spectroscopy in Strongly Interacting Fermi Gases
Presentation transcript:

Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf Grimm’s group, Innsbruck University, Austria BECBCS a=±  Top 10 Science Breakthroughs of 2004 Winner: Two Rovers on Mars Runner up: Indonesian “hobbit” Human cloning Condensation of Fermionic atoms … ”Breakthrough of the Year”, Science, Dec. 17, 2004

Content How do we distinguish two-body pairing and many- body pairing? Peculiar system 6 Li –Why do we have 300G Feshbach resonance? Pairing gap and collective modes in the crossover… –Breakdown of the smooth crossover? What is the experimental gap δ ? –BEC limit –BCS limit –In general

Phase diagram of a two-component Fermi gas Binding energy (E F ) Temp. (T F ) Thermal Fermi gas Thermal bosons Deg. Fermi gas Bose-Einstein condensation Cooper pairing   chemistry Superconductor AMO High-Tc He-3 6 Li M. Holland

The Mag net ic handle: Feshbach resonance Scattering between |1> and |2> BEC regimeBCS regime 834G a>0a<0 mol. state 300G wide Feshbach resonnace No interaction Tunable interaction

Feshbach resonance: tuning the scattering length atomic separation potential -  B Transition matrix Scattering length Nice picture, but also wrong! -- Fano profile 

6 Li 2 molecular energy (ab channel) Bare state Δ~40,000 E F R 0 =30 a 0 Δ=detuning Γ=Feshbach coupling

The Mag net ic handle: Feshbach resonance Scattering between |1> and |2> BEC regimeBCS regime 834G a>0a<0 mol. state 300G wide Feshbach resonnace Tunable interaction Tunable and stable, (Petrov et al., 2004)

Innsbruck: 6 Li BEC-BCS crossover na 3 = 0.001k F a = a = ±  density profile Bartenstein et al., PRL 04 Radial Compression Mode Axial Breathing Mode 1/k F a Bartenstein et al., PRL 04 gap Chin et al., Science 04 δ

rf In the molecule picture Pairing gap measurement: RF excitation State 3 is initially unpopulated f atom = E 23 f molecule = E 23 +E b +2E K atomsmolecules EbEb Excitation rate

Pairing in the BEC regime T´ >> T F T´ ~ T F T´ < 0.2 T F RF offset (kHz) molecules only atoms only mixture EbEb excitation rate (a.u.) BEC limit 720G a=2180a 0 k F a=0.4 Also by JILA group Excellent agreement Experiment Bartenstein et al., PRL 05 Theory Chin and Julienne, PRA 05

Radio-frequency spectroscopy on molecules Bound-free transitions EXPERIMENT: Bound-free transitions (4)GRF:82.593(2)MHz (4)GRF:82.944(2)MHz Bound-bound transitions (3)GRF: (5)MHz (2)GRF: (3)MHz THEORY (Simoni, Tiesinga, Julienne) a s =45.167(8)a0, a T =-2140(18)a0 Feshbach resonance positions |1>+|2>:  1.5 G Resonance width: 300G  Exp: M. Bartenstein et al, PRL 94, Theo: C. Chin and P. Julienne, PRA 71,

RF offset (kHz) RF offset (E F ) excitation rate (875 G ka=-3) T´ >> T F 0.5 T F < 0.2 T F Creation of a hole in state 2 and then a particle in state 3 with zero momentum transfer. Energy cost: 0.06 E F RF excitation (BCS regime)

Pairing gap vs. Temperature (psuedo gap?) << 0.1 T/T F 0.38T F 0.26T F ~ T c 0.18T F 0.10T F T Theory C. Chin et al., Science 04 J. Kinnunen et al., Science 04 Calibrated by K. Levin Other theory: H. Heiselberg: supergap A. Griffin: Andreev states Yu and Baym: SU(2) symmetry breaking

Last evidence: Pairing gaps vs. Fermi energies Two-body calculation gap T F = 3  K dense clould T F = 1  K dilute cloud BEC regime BCS regime

RF pairing gap δ approaches E b in the BEC limit Δ 2 /E F in the BCS limit. Conjecture: δ= Conclusion and Future RF pairing gap δ vanish due to dimensionality? Others: A unified theory for RF with the right limit? Broadening of the narrow feature Pseudo gap Lack of mean-field shift??