2008-04-21M. Csanád, T. Csörg ő, M.I. Nagy New analytic results in hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy ELTE.

Slides:



Advertisements
Similar presentations
M. Csanád at QM’04 Indication for deconfinement at RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to spectra.
Advertisements

M. Csanád, T. Csörg ő, M.I. Nagy Exact results in analytic hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy.
R. Lacey, SUNY Stony Brook 1 Arkadij Taranenko Quark Matter 2006 November 13-20, Shanghai, China Nuclear Chemistry Group SUNY Stony Brook, USA PHENIX Studies.
Elliptic flow of thermal photons in Au+Au collisions at 200GeV QNP2009 Beijing, Sep , 2009 F.M. Liu Central China Normal University, China T. Hirano.
Supported by DOE 11/22/2011 QGP viscosity at RHIC and LHC energies 1 Huichao Song 宋慧超 Seminar at the Interdisciplinary Center for Theoretical Study, USTC.
Effects of Bulk Viscosity on p T -Spectra and Elliptic Flow Parameter Akihiko Monnai Department of Physics, The University of Tokyo, Japan Collaborator:
Initial conditons, equations of state and final state in hydrodynamics Hydro modelsHydro models IS, EoS, FOC and FSIS, EoS, FOC and FS ObservablesObservables.
The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
CERN May Heavy Ion Collisions at the LHC Last Call for Predictions Initial conditions and space-time scales in relativistic heavy ion collisions.
A. ISMD 2003, Cracow Indication for RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to.
Roy A. Lacey, Stony Brook; 24 th Winter Workshop on Nuclear Dynamics, April 5-12, Roy A. Lacey Prospects for locating the QCD Critical End Point.
Marcus Bleicher, WWND 2008 A fully integrated (3+1) dimensional Hydro + Boltzmann Hybrid Approach Marcus Bleicher Institut für Theoretische Physik Goethe.
5-12 April 2008 Winter Workshop on Nuclear Dynamics STAR Particle production at RHIC Aneta Iordanova for the STAR collaboration.
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Cracow, Poland Based on paper M.Ch., W. Florkowski nucl-th/ Characteristic.
WWND, San Diego1 Scaling Characteristics of Azimuthal Anisotropy at RHIC Michael Issah SUNY Stony Brook for the PHENIX Collaboration.
Perfect Fluid: flow measurements are described by ideal hydro Problem: all fluids have some viscosity -- can we measure it? I. Radial flow fluctuations:
Effects of Bulk Viscosity at Freezeout Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano Nagoya Mini-Workshop.
S C O T T PRATPRAT MICHIGANMICHIGAN S T T E UNIVRSITYUNIVRSITY T H BTBT PUZZLE PUZZLE Z A N D E X T E N D I N G HYRODYNAMICS HYRODYNAMICS.
Viscous hydrodynamics DPF 2009 Huichao Song The Ohio State University Supported by DOE 07/30/2009 July 27-July 31, Detroit, MI with shear and bulk viscosity.
Behind QGP Investigating the matter of the early Universe Investigating the matter of the early Universe Is the form of this matter Quark Gluon Plasma?
Sept WPCF-2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev Based on: Yu.S., I. Karpenko,
Máté Csanád, Imre Májer Eötvös University Budapest WPCF 2011, Tokyo.
Spectra Physics at RHIC : Highlights from 200 GeV data Manuel Calderón de la Barca Sánchez ISMD ‘02, Alushta, Ukraine Sep 9, 2002.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model LongGang Pang 1, Victor Roy 1,, Guang-You Qin 1, & Xin-Nian.
The effects of viscosity on hydrodynamical evolution of QGP 苏中乾 大连理工大学 Dalian University of Technology.
STRING PERCOLATION AND THE GLASMA C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela CERN The first heavy ion collisions at the.
Workshop for Particle Correlations and Femtoscopy 2011
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Jaipur February 2008 Quark Matter 2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev (with participation.
T. Zimányi'75, Budapest, 2007/7/2 1 T. Csörgő, M. Csanád and Y. Hama MTA KFKI RMKI, Budapest, Hungary ELTE University, Budapest, Hungary USP,
Relativistic Hydrodynamics T. Csörgő (KFKI RMKI Budapest) new solutions with ellipsoidal symmetry Fireball hydrodynamics: Simple models work well at SPS.
T. KSU, USA, 2009/01/23 1 Csörgő, Tamás MTA KFKI RMKI, Budapest, Hungary High temperature superfluidity in Introduction: “RHIC Serves.
Zagreb, Croatia, 2015/04/20 Csörgő, T. 1 New exact solutions of hydrodynamcs and search for the QCD Critical Point T. Csörgő 1,2 with I.Barna 1 and M.
2+1 Relativistic hydrodynamics for heavy-ion collisions Mikołaj Chojnacki IFJ PAN NZ41.
1 Jeffery T. Mitchell – Quark Matter /17/12 The RHIC Beam Energy Scan Program: Results from the PHENIX Experiment Jeffery T. Mitchell Brookhaven.
LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions.
Flow fluctuation and event plane correlation from E-by-E Hydrodynamics and Transport Model Victor Roy Central China Normal University, Wuhan, China Collaborators.
T. NN2006, Rio de Janeiro, 2006/8/31 1 T. Csörgő MTA KFKI RMKI, Budapest, Hungary Correlation Signatures of a Second Order QCD Phase Transition.
Does HBT interferometry probe thermalization? Clément Gombeaud, Tuomas Lappi and J-Y Ollitrault IPhT Saclay WPCF 2009, CERN, October 16, 2009.
Partial thermalization, a key ingredient of the HBT Puzzle Clément Gombeaud CEA/Saclay-CNRS Quark-Matter 09, April 09.
Csanád Máté 1 Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC Máté Csanád (ELTE, Budapest, Hungary) Why heavy ion physics –
T. Csörgő 1,2 Scaling properties of elliptic flow in nearly perfect fluids 1 MTA KFKI RMKI, Budapest, Hungary 2 Department of.
WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA,
Two freeze-out model for the hadrons produced in the Relativistic Heavy-Ion Collisions. New Frontiers in QCD 28 Oct, 2011, Yonsei Univ., Seoul, Korea Suk.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Zimányi Winter School, ELTE, 6/12/ Csörgő T. Review of the first results from the RHIC Beam Energy Scan Csörgő, Tamás Wigner Research Centre for.
PhD student at the International PhD Studies Institute of Nuclear Physics PAN Institute of Nuclear Physics PAN Department of Theory of Structure of Matter.
Understanding the rapidity dependence of v 2 and HBT at RHIC M. Csanád (Eötvös University, Budapest) WPCF 2005 August 15-17, Kromeriz.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
Particle emission in hydrodynamic picture of ultra-relativistic heavy ion collisions Yu. Karpenko Bogolyubov Institute for Theoretical Physics and Kiev.
23-Oct-08 W.A. Zajc Exploring the Lower Limits of Perfection W. A Zajc Columbia University DNP08 Workshop: Quantifying the Character of the sQGP.
Japanese Physics Society meeting, Hokkaido Univ. 23/Sep/2007, JPS meeting, Sapporo, JapanShinIchi Esumi, Inst. of Physics, Univ. of Tsukuba1 Collective.
T. Csörgő 1,2 for the PHENIX Collaboration Femtoscopic results in Au+Au & p+p from PHENIX at RHIC 1 MTA KFKI RMKI, Budapest,
Flow and Dissipation in Ultrarelativistic Heavy Ion Collisions September 16 th 2009, ECT* Italy Akihiko Monnai Department of Physics, The University of.
Helen Caines Yale University Strasbourg - May 2006 Strangeness and entropy.
PHENIX Results from the RHIC Beam Energy Scan Brett Fadem for the PHENIX Collaboration Winter Workshop on Nuclear Dynamics 2016.
A generalized Buda-Lund model M. Csanád, T. Csörgő and B. Lörstad (Budapest & Lund) Buda-Lund model for ellipsoidally symmetric systems and it’s comparison.
What do the scaling characteristics of elliptic flow reveal about the properties of the matter at RHIC ? Michael Issah Stony Brook University for the PHENIX.
A. Ster A. Ster 1, T. Csörgő 1,2, M. Csanád 3, B. Lörstad 4, B. Tomasik 5 Oscillating HBT radii and the time evolution of the source 200 GeV Au+Au data.
Akihiko Monnai Department of Physics, The University of Tokyo Collaborator: Tetsufumi Hirano V iscous Hydrodynamic Evolution with Non-Boost Invariant Flow.
WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1.
Hydro + Cascade Model at RHIC
New solutions of fireball hydrodynamics with shear and bulk viscosity
Bulk viscosity in heavy ion collisions
Effects of Bulk Viscosity at Freezeout
Effects of Bulk Viscosity on pT Spectra and Elliptic Flow Coefficients
The 1st International 9421 Conference
Presentation transcript:

M. Csanád, T. Csörg ő, M.I. Nagy New analytic results in hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy ELTE MTA KFKI RMKI Budapest, Hungary Hydrodynamics at RHIC and QCD EOS Workshop, BNL, USA April 21, 2008

M. Csanád, T. Csörg ő, M.I. Nagy High temperature superfluidity at RHIC! All “realistic” hydrodynamic calculations for RHIC fluids to date have assumed zero viscosity  = 0 →  perfect fluid a conjectured quantum limit: P. Kovtun, D.T. Son, A.O. Starinets, hep-th/ How “ordinary” fluids compare to this limit? (4  ) η /s > 10 P. KovtunD.T. SonA.O. Starinetshep-th/ RHIC’s perfect fluid (4  ) η /s ~1 ! T > 2 Terakelvin The hottest & most perfect fluid ever made… (4  R. Lacey et al., Phys.Rev.Lett.98:092301,2007

M. Csanád, T. Csörg ő, M.I. Nagy Relativistic hydrodynamics Energy-momentum tensor: Relativistic Euler equation: Energy conservation: Charge conservation: Consequence is entropy conservation:

M. Csanád, T. Csörg ő, M.I. Nagy Context Renowned exact solutions Landau-Khalatnikov solution : dn/dy ~ Gaussian Hwa solution (PRD 10, 2260 (1974)) - Bjorken  0 estimate (1983) Chiu, Sudarshan and Wang: plateaux Baym, Friman, Blaizot, Soyeur and Czyz: finite size parameter  Srivastava, Alam, Chakrabarty, Raha and Sinha: dn/dy ~ Gaussian Revival of interest: Buda-Lund model + exact solutions, Biró, Karpenko+Sinyukov, Pratt (2007), Bialas+Janik+Peschanski, Borsch+Zhdanov (2007) New simple solutions Evaluation of measurables Rapidity distribution Advanced initial energy density HBT radii Advanced life-time estimation

M. Csanád, T. Csörg ő, M.I. Nagy Goal Need for solutions that are: explicit simple accelerating relativistic realistic / compatible with the data : lattice QCD EoS ellipsoidal symmetry (spectra, v 2, v 4, HBT) finite dn/dy Report on a new class that satisfies each of these criteria but not simultaneously M.I. Nagy, T. Cs., M. Csanád, arXiv: v1, PRC77: (2008) arXiv: v1 T. Cs, M. I. Nagy, M. Csanád, arXiv:nucl-th/ v4, PLB (2008)arXiv:nucl-th/ v4 M. Csanád, M. I. Nagy, T. Cs, arXiv: v3 [nucl-th] EPJ A (2008)arXiv: v3

M. Csanád, T. Csörg ő, M.I. Nagy Self-similar, ellipsoidal solutions Publication (for example): T. Csörg ő, L.P.Csernai, Y. Hama, T. Kodama, Heavy Ion Phys. A 21 (2004) 73 3D spherically symmetric HUBBLE flow: No acceleration : Define a scaling variable for self-similarly expanding ellipsoids: EoS : (massive) ideal gas Scaling function (s) can be chosen freely. Shear and bulk viscous corrections in NR limit : known analytically.

M. Csanád, T. Csörg ő, M.I. Nagy Some general remarks Hydrodynamics= Initial conditions  dynamical equations  freeze-out conditions Exact solution = formulas solve hydro without approximation Parametric solution = shape parameters introduced, time dependence given by ordinary coupled diff. eqs. Hydro inspired parameterization = shape parameters determined only at the freeze-out their time dependence is not considered Report on new class of exact, parametric solution of relativistic hydro M.I. Nagy, T. Cs., M. Csanád, arXiv: v1, PRC77: (2008) arXiv: v1 T. Cs, M. I. Nagy, M. Csanád, arXiv:nucl-th/ v4, PLB (2008)arXiv:nucl-th/ v4 M. Csanád, M. I. Nagy, T. Cs, arXiv: v3 [nucl-th] EPJ A (2008)arXiv: v3 Initial conditions: pressure and velocity on  =  0 = const EoS:  - B =  (p+B) c s 2 = 1/  Freeze-out condition: T= T f (  = 0), local simultaneity, n = u

M. Csanád, T. Csörg ő, M.I. Nagy New, simple, exact solutions If  = d = 1, general solution is obtained, for initial conditions. It is STABLE ! ARBITRARY initial conditions. It is STABLE ! Possible cases (one row of the table is one solution): Hwa-Bjorken, Buda-Lund type New, accelerating, d dimension d dimensional with p=p( ,  ) (thanks T. S. Biró) Special EoS, but general velocity Nagy,CsT, Csanád: Nagy,CsT, Csanád: arXiv: v1

M. Csanád, T. Csörg ő, M.I. Nagy New simple solutions Different final states from similar initial states are reached by varying

M. Csanád, T. Csörg ő, M.I. Nagy New simple solutions Similar final states from different initial states are reached by varying

M. Csanád, T. Csörg ő, M.I. Nagy Rapidity distribution Rapidity distribution from the 1+1 dimensional solution, for  > 1. T f : slope parameter.

M. Csanád, T. Csörg ő, M.I. Nagy Pseudorapidity distributions BRAHMS data fitted with the analytic formula of Additionally: y  η transformation

M. Csanád, T. Csörg ő, M.I. Nagy BRAHMS rapidity distribution BRAHMS dn/dy data fitted with the analytic formula

M. Csanád, T. Csörg ő, M.I. Nagy Advanced energy density estimate Fit result:  > 1 Flows accelerate: do work initial energy density is higher than Bjorken’s Work and acceleration. FYI: For  > 1 (accelerating) flows, both factors > 1

M. Csanád, T. Csörg ő, M.I. Nagy Advanced energy density estimate Correction depends on timescales, dependence is: With a typical  f /  0 of ~8-10, one gets a correction With a typical  f /  0 of ~8-10, one gets a correction factor of 2!

M. Csanád, T. Csörg ő, M.I. Nagy Conjecture: EoS dependence of  0 Four constraints 1)  Bj is independent of EoS (  = 1 case) 2) c s 2 = 1 case is solved for any  > 0.5 2) c s 2 = 1 case is solved for any  > 0.5 Corrections due to respect these limits. 3) c s 2 dependence of  is known in NR limit 3) c s 2 dependence of  is known in NR limit arXiv:hep- ph/ v2 arXiv:hep- ph/ v2 4) Numerical hydro results, 4) Numerical hydro results, e.g. K. Morita, arXiv:nucl-th/ v2arXiv:nucl-th/ v2 Conjectured formula – given by the principle of Occam’s razor: Using = 1.18, c s = 0.35,  f /  0 = 10, we get c s /  Bj = 2.9 Using = 1.18, c s = 0.35,  f /  0 = 10, we get  c s /  Bj = 2.9 in 200 GeV, 0-5 % Au+Au at RHIC  0 = 14.5 GeV/fm 3 in 200 GeV, 0-5 % Au+Au at RHIC

M. Csanád, T. Csörg ő, M.I. Nagy Conjectured EoS dependence of  0 Using = 1.18, and  f /  0 = 10 as before and c s = 0.35, [PHENIX, we get c s /  Bj = 2.9 and c s = 0.35, [PHENIX, arXiv:nucl-ex/ v1 ] we get  c s /  Bj = 2.9 arXiv:nucl-ex/ v1 in 200 GeV, 0-5 % Au+Au at RHIC  0 = 14.5 GeV/fm 3 in 200 GeV, 0-5 % Au+Au at RHIC

M. Csanád, T. Csörg ő, M.I. Nagy Advanced life-time estimate Life-time estimation: for Hwa-Bjorken type of flows Makhlin & Sinyukov, Z. Phys. C 39, 69 (1988) Underestimates lifetime (Renk, CsT, Wiedemann, Pratt, … ) Advanced life-time estimate: width of dn/dy related to acceleration and work At RHIC energies: correction is about +20%

M. Csanád, T. Csörg ő, M.I. Nagy Conjectured EoS dependence of  c Using = 1.18, and c s = 0.35, we get Using = 1.18, and c s = 0.35, we get  c s /  Bj = 1.36 in 200 GeV, 0-5 % Au+Au at RHIC in 200 GeV, 0-5 % Au+Au at RHIC

M. Csanád, T. Csörg ő, M.I. Nagy Conclusions Explicit simple accelerating relativistic hydrodynamics Analytic (approximate) calculation of observables Realistic rapidity distributions; BRAHMS data well described No go theorem: same final states, different initial states New estimate of initial energy density:  c /  Bj at least RHIC dependence on c s estimated,  c /  Bj ~ 3 for c s = 0.35 Estimated work effects on lifetime: at least 20% RHIC dependence on c s estimated,  c /  Bj ~ 1.4 for c s = 0.35 A lot to do … more general EoS less symmetry, ellipsoidal solutions asymptotically Hubble-like flows

M. Csanád, T. Csörg ő, M.I. Nagy New simple solutions in 1+D dim Fluid trajectories of the 1+D dimenisonal new solution THANK YOU!

M. Csanád, T. Csörg ő, M.I. Nagy Some comments

M. Csanád, T. Csörg ő, M.I. Nagy RHIC and the Phase “Transition” The lattice tells us that collisions at RHIC map out the interesting region from  Bj ~ 5 GeV/fm 3 for flat dn/dy to  c ~ 15 GeV/fm 3 for finite dn/dy ~ from RHIC to LHC What about SPS?

M. Csanád, T. Csörg ő, M.I. Nagy Models that pass the HBT test Models with acceptable results: nucl-th/ Multiphase Trasport model (AMPT) Z. Lin, C. M. Ko, S. Pal nucl-th/ Hadron cascade model T. Humanic hep-ph/ Buda-Lund hydro model nucl-th/ T. Csörg ő, B. Lörstad, A. Ster hep-ph/ Cracow (single freeze-out, thermal) W. Broniowski, W. Florkowski nucl-ex/ Blast wave model F. Retiére for STAR arXiv: v1arXiv: v boost invariant rel. hydrodynamical solution, Gaussian IC, lattice QCD EoS, resonance decays W. Broniowski, M. Chojnacki, W. Florkowski, A. Kisiel

M. Csanád, T. Csörg ő, M.I. Nagy Comments on RHIC HBT puzzle Spectra, v2 and HBT radii described by ideal hydro + resonance decays using Gaussian initial pressure profile and directional Hubble flow W. Broniowski et al, arXiv: v1arXiv: v1

M. Csanád, T. Csörg ő, M.I. Nagy Back-up Slides

M. Csanád, T. Csörg ő, M.I. Nagy How Perfect is Perfect? Measure η /s ! Damping (flow, fluctuations, heavy quark motion) ~ η /s FLOW: Has the QCD Critical Point Been Signaled by Observations at RHIC?, R. Lacey et al., Phys.Rev.Lett.98:092301,2007 (nucl-ex/ )nucl-ex/ The Centrality dependence of Elliptic flow, the Hydrodynamic Limit, and the Viscosity of Hot QCD, H.-J. Drescher et al., (arXiv: )arXiv: FLUCTUATIONS: Measuring Shear Viscosity Using Transverse Momentum Correlations in Relativistic Nuclear Collisions, S. Gavin and M. Abdel-Aziz, Phys.Rev.Lett.97:162302,2006 (nucl-th/ )nucl-th/ DRAG, FLOW: Energy Loss and Flow of Heavy Quarks in Au+Au Collisions at √s NN = 200 GeV (PHENIX Collaboration), A. Adare et al., Phys.Rev.Lett.98:172301,2007 (nucl-ex/ )nucl-ex/ CHARM!CHARM!

M. Csanád, T. Csörg ő, M.I. Nagy Landau-Khalatnikov solution Publications: L.D. Landau, Izv. Acad. Nauk SSSR 81 (1953) 51 I.M. Khalatnikov, Zhur. Eksp.Teor.Fiz. 27 (1954) 529 L.D.Landau and S.Z.Belenkij, Usp. Fiz. Nauk 56 (1955) 309 Implicit 1D solution with approx. Gaussian rapidity distribution Basic relations: Unknown variables: Auxiliary function: Expression of is a true „tour de force”

M. Csanád, T. Csörg ő, M.I. Nagy Landau-Khalatnikov solution Temperature distribution (animation courtesy of T. Kodama) „Tour de force” implicit solution: t=t(T,v), r=r(T,v)

M. Csanád, T. Csörg ő, M.I. Nagy Hwa-Bjorken solution The Hwa-Bjorken solution / Rindler coordinates

M. Csanád, T. Csörg ő, M.I. Nagy Hwa-Bjorken solution The Hwa-Bjorken solution / Temperature evolution

M. Csanád, T. Csörg ő, M.I. Nagy Bialas-Janik-Peschanski solution Publications: A. Bialas, R. Janik, R. Peschanski, arXiv: v1 Accelerating, expanding 1D solution interpolates between Landau and Bjorken Generalized Rindler coordinates:

M. Csanád, T. Csörg ő, M.I. Nagy Hwa-Bjorken solution Publications: R.C. Hwa, Phys. Rev. D10, 2260 (1974) J.D. Bjorken, Phys. Rev. D27, 40(1983) Accelerationless, expanding 1D simple boost-invariant solution Rindler coordinates: Boost-invariance (valid for asymptotically high energies): depends on EoS, e.g.

M. Csanád, T. Csörg ő, M.I. Nagy New simple solutions in 1+d dim The fluid lines (red) and the pseudo-orthogonal freeze-out surface (black)

M. Csanád, T. Csörg ő, M.I. Nagy Rapidity distribution Rapidity distribution from the 1+1 dimensional solution, for.

M. Csanád, T. Csörg ő, M.I. Nagy 1 st milestone: new phenomena Suppression of high p t particle production in Au+Au collisions at RHIC

M. Csanád, T. Csörg ő, M.I. Nagy 2 nd milestone: new form of matter d+Au: no suppression Its not the nuclear effect on the structure functions Au+Au: new form of matter !

M. Csanád, T. Csörg ő, M.I. Nagy 3 rd milestone: Top Physics Story PHENIX White Paper: second most cited in nucl-ex during 2006

M. Csanád, T. Csörg ő, M.I. Nagy Strange and even charm quarks participate in the flow v 2 for the φ follows that of other mesons v 2 for the D follows that of other mesons 4 th Milestone: A fluid of quarks

M. Csanád, T. Csörg ő, M.I. Nagy Predictions of the Buda-Lund model Hydro predicts scaling (even viscous) What does a scaling mean? See Hubble’s law – or Newtonian gravity: Cannot predict acceleration or height Collective, thermal behavior → Loss of information Spectra slopes: Elliptic flow: HBT radii:

M. Csanád, T. Csörg ő, M.I. Nagy data Axial Buda-Lund Ellipsoidal Buda-Lund Perfect non-relativistic solutions Relativistic solutions w/o acceleration Relativistic solutions w/ acceleration Dissipative non- relativistic solutions Hwa Bjorken Hubble What does the data tell us

M. Csanád, T. Csörg ő, M.I. Nagy BudaLund fits to 130 GeV RHIC data M. Csanád, T. Csörg ő, B. Lörstad, A. Ster, nucl-th/ , ISMD03

M. Csanád, T. Csörg ő, M.I. Nagy BudaLund fits to 200 GeV RHIC data M. Csanád, T. Csörg ő, B. Lörstad, A. Ster, nucl-th/ , QM04