 1987, Whistler: first time I met Malcolm  1989-1991, post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and.

Slides:



Advertisements
Similar presentations
SUMMARY 1.Statistical equilibrium and radiative transfer in molecular (H 2 ) cloud – Derivation of physical parameters of molecular clouds 2.High-mass.
Advertisements

Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
Massive Young Stars in the Galaxy Melvin Hoare University of Leeds UK.
1)Are disks predicted? Theories of HM SF 2)Are disks observed? Search methods 3)Observational evidence disks VS toroids 4)Open questions and the future:
Intermediate-mass star- forming regions: are they so complex? Maite Beltrán Josep Miquel Girart Robert Estalella Paul T.P. Ho Aina Palau.
Class I Methanol Masers and Molecular Outflows at 7mm Arturo I. Gómez-Ruiz * MPIfR * Member of the International Max-Planck Research School for Astronomy.
High Resolution Observations in B1-IRS: ammonia, CCS and water masers Claire Chandler, NRAO José F. Gómez, LAEFF-INTA Thomas B. Kuiper, JPL José M. Torrelles,
Masers and Massive Star Formation Claire Chandler Overview: –Some fundamental questions in massive star formation –Clues from masers –Review of three regions:
High-Mass Star-Forming Regions in the G333 Cloud Indra Bains & the DQS team.
 MOLECULAR GAS IN THE CORES OF AGN Violette Impellizzeri (NRAO) Alan Roy (MPIfR), Christian Henkel (MPIfR)
1)Disks and high-mass star formation: existence and implications 2)The case of G : characteristics 3)Velocity field in G31.41: rotation or expansion?
Loránt Sjouwerman, Ylva Pihlström & Vincent Fish.
A Birth and Growth of a Collimated Molecular Jet from an AGB Star
Asymmetric Planetary Nebulae IV La Palma, Canary Islands Water Fountains in Pre-Planetary Nebulae Mark Claussen, NRAO June 19, 2007 Hancock, New Hampshire.
NRAO Socorro 05/2009 Radio Continuum Studies of Massive Protostars Peter Hofner New Mexico Tech & NRAO.
A massive disk around the intermediate-mass young star AFGL 490 ? Katharina Schreyer (AIU Jena, Germany) Thomas Henning (MPIA Heidelberg, Germany) Floris.
Structures of accretion and outflow on small scales in high-mass protostars CIRIACO GODDI.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
Outflow, infall, and rotation in high-mass star forming regions
SMA Observations of the Binary Protostar System in L723 Josep Miquel Girart 1, Ramp Rao 2, Robert Estalella 3 & Josep Mª Masqué 3 1 Institut de Ciències.
EGOs: Massive YSOs in IRDCs Ed Churchwell & Claudia Cyganowski with co-workers: Crystal Brogan, Todd Hunter, Barb Whitney Qizhou Zhang Dense Cores in Dark.
Mini Workshop on Star Formation and Astrochemistry. Barcelona, 2006 November 23 1 Robert Estalella, Aina Palau, Maite Beltrán (UB) Paul T. P. Ho (CfA),
SiO J=5-4 in the HH211 Protostellar Jet Imaged with the SMA Naomi Hirano (ASIAA, Taiwan) (=^_^=) (=^_^=)/ Sheng-yuan Liu 1, Hsien Shang 1, PaulT.P. Ho.
Cambridge, June 13-16, 2005 A Study of Massive Proto- and Pre-stellar Candidates with the SEST Antenna Maite Beltrán Universitat de Barcelona J. Brand.
SMA Observations of High Mass Protostellar Objects (HMPOs) Submm Astronomy in Era of SMA June 15, 2005 Crystal Brogan (U. of Hawaii) Y. Shirley (NRAO),
Leonardo Testi: (Sub)Millimeter Observations of Disks Around High-Mass Proto-Stars, SMA, Cambridge 14 Jun 2005 Disks around High-Mass (Proto-)Stars  From.
SiO J=5-4 in the HH211 Protostellar Jet Imaged with the SMA Naomi Hirano (ASIAA, Taiwan) (=^_^=) (=^_^=)/ Sheng-yuan Liu 1, Hsien Shang 1, PaulT.P. Ho.
Star and Planet Formation Sommer term 2007 Henrik Beuther & Sebastian Wolf 16.4 Introduction (H.B. & S.W.) 23.4 Physical processes, heating and cooling.
Star Formation Research Now & With ALMA Debra Shepherd National Radio Astronomy Observatory ALMA Specifications: Today’s (sub)millimeter interferometers.
MALT 90 Millimetre Astronomy Legacy Team 90 GHz survey
Molecular absorption in Cen A on VLBI scales Huib Jan van Langevelde, JIVE Ylva Pihlström, NRAO Tony Beasley, CARMA.
Masers observations of Magnetic fields during Massive Star Formation Wouter Vlemmings (Argelander-Institut für Astronomie, Bonn) with Gabriele Surcis,
Panoramic Views of Water Fountain Sources Hiroshi Imai Graduate School of Science and Engineering Kagoshima University A Neapolitan of Masers: Variability,
Rotating Disks around O-type Young Stars in NGC7538 IRS1 3D Gas Dynamics from Methanol Masers observed with the EVN Ciriaco Goddi.
A MINIMUM COLUMN DENSITY FOR O-B STAR FORMATION: AN OBSERVATIONAL TEST Ana López Sepulcre INAF - Osservatorio Astrofisico di Arcetri (Firenze, ITALY) Co-authors:
High-mass star forming regions: An ALMA view Riccardo Cesaroni INAF - Osservatorio Astrofisico di Arcetri.
Massive Star Formation Observational Cassandra Fallscheer PhD Advisor: Henrik Beuther Monday 28. March 2007.
VLBI observations of H 2 O masers towards the high-mass Young Stellar Objects in AFGL 5142 Ciriaco Goddi Università di Cagliari, INAF-Osservatorio Astronomico.
Studying Young Stellar Objects with the EVLA
Methanol maser and 3 mm line studies of EGOs Xi Chen (ShAO) 2009 East Asia VLBI Workshop, March , Seoul Simon Ellingsen (UTAS) Zhi-Qiang Shen.
Submillimeter Array CH3OH A Cluster of Highly Collimated and Young Bipolar Outflows Emanating from OMC1 South. Luis A. Zapata 1,2, Luis.
Maite Beltrán Osservatorio Astrofisico di Arcetri The intringuing hot molecular core G
1)Observations: where do (massive) stars form? 2)Theory: how do (massive) stars form? 3)Search for disks in high-mass (proto)stars 4)Results: disks in.
Multiple YSOs in the low-mass star-forming region IRAS CONTENT Introduction Previous work on IRAS Observations Results Discussion.
Early O-Type Stars in the W51-IRS2 Cluster A template to study the most massive (proto)stars Luis Zapata Max Planck Institut für Radioastronomie, GERMANY.
Associating Sites of Methanol Masers at 6.7 GHz in Onsala East Asia VLBI Workshop, Seoul, Korea 2009, 3, Sugiyama, Koichiro 杉山 孝一郎 스기야마 코이치로.
1)OB star formation: pros and contras of maser studies 2)Are maser (VLBI) studies “obsolete”? 3)Association of masers with jets/disks: some examples 4)Conclusion:
1)The environment of star formation 2)Theory: low-mass versus high-mass stars 3)The birthplaces of high-mass stars 4)Evolutionary scheme for high-mass.
Searching for disks around high-mass (proto)stars with ALMA R. Cesaroni, H. Zinnecker, M.T. Beltrán, S. Etoka, D. Galli, C. Hummel, N. Kumar, L. Moscadelli,
What does Ammonia trace in Egg Nebula Pao-Jan Chiu Pao-Jan Chiu With Jeremy Lim
Low-luminosity Extragalactic H 2 O Masers Yoshiaki Hagiwara ASTRON.
1)Are disks predicted?  Theories of HM SF 2)Are disks observed?  Search methods 3)Observational evidence  disks VS toroids 4)Open questions and the.
1)Evolution and SED shape 2)Complementary tools to establish evolution 3)A possible evolutionary sequence Evolutionary stages of high-mass star formation.
PI Total time #CoIs, team Silvia Leurini 24h (ALMA, extended and compact configurations, APEX?) Menten, Schilke, Stanke, Wyrowski Disk dynamics in very.
NGC7538-IRS1: Polarized Dust & Molecular Outflow C. L. H. Hull (UC Berkeley), T. Pillai (Caltech), J.-H. Zhao (CfA), G. Sandell (SOFIA-USRA, NASA), M.
1)The importance of disks in massive (proto)stars 2)The search for disks: methods and tracers 3)The result: “real” disks found in B (proto)stars 4)The.
LDN 723: Can molecular emission be used as clock calibrators? Josep Miquel Girart Collaborators: J.M.Masqué,R.Estalella (UB) R.Rao (SMA)
ALMA Cycle 0 Observation of Orion Radio Source I Tomoya Hirota (Mizusawa VLBI observatory, NAOJ) Mikyoung Kim (KVN,KASI) Yasutaka Kurono (ALMA,NAOJ) Mareki.
1)The recipe of (OB) star formation: infall, outflow, rotation  the role of accretion disks 2)OB star formation: observational problems 3)The search for.
SMA and ASTE Observations of Low-mass Protostellar Envelopes in the Submillimeter CS (J = 7-6) and HCN (J = 4-3) Lines Shigehisa Takakuwa 1, Takeshi Kamazaki.
Massive Star-Formation in G studied by means of Maser VLBI and Thermal Interferometric Observations Luca Moscadelli INAF – Osservatorio Astrofisico.
High-mass star formation
Lecture 3 – High Mass Star Formation
Possible evolutionary sequence for high-mass star formation
Portrait of a Forming Massive Protocluster: NGC6334 I(N)
Osservatorio Astrofisico di Arcetri
High Resolution Submm Observations of Massive Protostars
MASER Microwave Amplification by Stimulated Emission of Radiation
Chasing disks around massive stars with Malcolm
Circumstellar SiO masers in long period variable stars
Presentation transcript:

 1987, Whistler: first time I met Malcolm  , post-doc at MPIfR: study of molecular gas in UC HII regions (NH 3, C 34 S, CH 3 CN) with 100m and 30m tel.  pc-scale clumps and strong, optically thick emission  1992-…, Arcetri (with Malcolm): NH 3, CH 3 CN observations with VLA & PdBI  0.1 pc HMCs, cradles of OB stars  1994-…, younger phase??? Luminous IRAS sources, with H 2 O maser but w/o UCHII Forward

IRAS : the story  1994: 30-m survey of IRAS sources with H 2 O maser: 13 CO, CS, C 34 S, CH 3 OH, HCO +, HCN, CH 3 CN  dense clumps and outflows  1995: PdBI follow up of ‘‘wisely’’ chosen source: IRAS DC config., 4 antennas, only 3mm RX: HCO + (1-0); CH 3 CN(5-4) v=0,1; CH 3 13 CN(5-4)

IRAS : the story  1994: 30-m survey of IRAS sources with H 2 O maser: 13 CO, CS, C 34 S, CH 3 OH, HCO +, HCN, CH 3 CN  dense clumps and outflows  1995: PdBI follow up of ‘‘wisely’’ chosen source: IRAS DC config., 4 antennas, only 3mm RX HCO + (1-0); CH 3 CN(5-4) v=0,1; CH 3 13 CN(5-4)

Results HCO +  bipolar outflow –different orientation wrt Wilking et al. (1990) –blue- & red-shifted in both lobes CH 3 CN  rotating disk (?) –velocity gradient perpendicular to outflow NIR  H 2 jet; embedded cluster Open questions oCO & HCO + : one or two outflows? oCH 3 CN: rotation or expansion?

Wilking et al. (1990) blue-shifted red-shifted

HCO + (1-0) high-velocity low-velocity

Results HCO +  bipolar outflow –different orientation wrt Wilking et al. (1990) –blue- & red-shifted in both lobes CH 3 CN  rotating disk (?) –velocity gradient perpendicular to outflow NIR  H 2 jet; embedded cluster Open questions oCO & HCO + : one or two outflows? oCH 3 CN: rotation or expansion?

outflow axis 3 arcsec resolution

Results HCO +  bipolar outflow –different orientation wrt Wilking et al. (1990) –blue- & red-shifted in both lobes CH 3 CN  rotating disk (?) –velocity gradient perpendicular to outflow NIR  H 2 jet; embedded cluster Open questions oCO & HCO + : one or two outflows? oCH 3 CN: rotation or expansion?

Results HCO +  bipolar outflow –different orientation wrt Wilking et al. (1990) –blue- & red-shifted in both lobes CH 3 CN  rotating disk (?) –velocity gradient perpendicular to outflow NIR  H 2 jet; embedded cluster Open questions o CO & HCO + : one or two outflows? o CH 3 CN: rotation or expansion?

(?)

 1997: PdBI AB config., 5 antennas, 3mm & 1mm H 13 CO + (1-0); SiO(2-1); CH 3 CN & CH 3 13 CN(12-11) Results SiO  bipolar jet –consistent with H 2 jet and HCO + bipolar outflow at high vel. –expanding at 100 km/s CH 3 CN  rotating accretion(?) disk –Malcolm’s insight: line width suggests Keplerian rotation! –peak velocity suggestive of infall Open questions oSiO & HCO + : why is low velocity emission different? oWhat is the mass of the (proto)star?

high-velocity low-velocity

high-velocity low-velocity

Inclination=9° Opening ang.=21° V exp =100 km/s (R/R max )

 1997: PdBI AB config., 5 antennas, 3mm & 1mm H 13 CO + (1-0); SiO(2-1); CH 3 CN & CH 3 13 CN(12-11) Results SiO  bipolar jet –consistent with H 2 jet and HCO + bipolar outflow at high vel. –expanding at 100 km/s CH 3 CN  rotating accretion(?) disk –Malcolm’s insight: line width suggests Keplerian rotation! –peak velocity suggestive of infall Open questions oSiO & HCO + : why is low velocity emission different? oWhat is the mass of the (proto)star?

jet disk 0.7 arcsec resolution

FWHM  R -0.5   Keplerian rotation Malcolm’s insight:

FWHM  R -0.5   Keplerian rotation systemic velocity

dM acc /dt = M O /yr

 1997: PdBI AB config., 5 antennas, 3mm & 1mm H 13 CO + (1-0); SiO(2-1); CH 3 CN & CH 3 13 CN(12-11) Results SiO  bipolar jet –consistent with H 2 jet and HCO + bipolar outflow at high vel. –expanding at 100 km/s CH 3 CN  rotating accretion(?) disk –Malcolm’s insight: line width suggests Keplerian rotation! –peak velocity suggestive of infall Open questions o SiO & HCO + : why is low velocity emission different? o What is the mass of the (proto)star?

Zhang et al. (1998, 1999): NH 3 with VLA  Keplerian disk (20 M O star); low-velocity NH 3 in SiO jet Hofner et al. (1999): 3.6 cm cont. with VLA  thermal jet of 1000 AU Moscadelli et al.(2000): H 2 O maser with VLBA  conical jet over < 300 AU Shepherd et al. (2000): 12 CO(1-0) with OVRO  precession of jet/outflow In the meanwhile…

 2002: PdBI BC config., 6 antennas, 3mm & 1mm C 34 S(2-1) & (5-4); CH 3 OH(2-1) v=0,1 & (5-4) v=1 Results CH 3 OH  bipolar jet –similar to HCO + low-velocity bipolar outflow –precession explains difference between HV and LV flow C 34 S  disk –Keplerian rotation about 7 M O star –pseudo-Keplerian rotation on larger scales mimics more massive star –temperature & density gradient in disk

IRAS jet in H 2 line H 2 knots

IRAS Cesaroni et al. (2005) Precession model: opening angle=37° V exp =100 km/s 360°/20000 yr Lebròn et al. (2006)

Precession explains difference between high- and low-velocity HCO + (1-0) emission!

 2002: PdBI BC config., 6 antennas, 3mm & 1mm C 34 S(2-1) & (5-4); CH 3 OH(2-1) v=0,1 & (5-4) v=1 Results CH 3 OH  bipolar jet –similar to HCO + low-velocity bipolar outflow –precession explains difference between HV and LV flow C 34 S  disk –Keplerian rotation about 7 M O star –pseudo-Keplerian rotation on larger scales mimics more massive star –temperature & density gradient in disk

IRAS Cesaroni et al. Hofner et al. Moscadelli et al. Keplerian rotation: M * =7 M O Moscadelli et al. (2005)

More and more studies… Edris et al. (2005): CH 3 OH & OH with Merlin  Keplerian rotation (< 20 M O star) Sridharan et al. (2005): K, L’, M’ with UKIRT  disk and binary system (850 AU separation) Trinidad et al. (2005): H 2 O & 1.3cm with VLA  rotation of H 2 O maser jet? Lebròn et al. (2006): 12 CO(2-1) with 30m  precession of outflow

IRAS : the picture Clump: 1 pc, 400 M O, 40 K Outflow/jet: yr, 100 km/s, M O /yr, precession every yr Keplerian disk: 4 M O, 1500 AU, 150 K, > 10 8 cm -3, T & n H2 gradient, accretion(?) at M O /yr (proto)star: 7+/-2 M O, 10 4 L O Best example of circumstellar accretion disk in high-mass (proto)star  important implications on high-mass star formation

IRAS : the never-ending story Is the distance 1.7 kpc??? Is the clump counter-rotating???  parallax of 44 GHz CH 3 OH masers  merging of C 34 S Pico Veleta with PdBI  SiO velocity in precessing jet, H 2 O maser VLBI monitoring, high resolution & sensitivity PdBI imaging of CH 3 CN disk, etc. etc.…

IRAS : the never-ending story Is the distance 1.7 kpc??? Is the clump counter-rotating???  parallax of 44 GHz CH 3 OH masers  merging of C 34 S Pico Veleta with PdBI  SiO velocity in precessing jet, H 2 O maser VLBI monitoring, high resolution & sensitivity PdBI imaging of CH 3 CN disk, etc. etc.…

Still a lot to understand… Malcolm’s tips urgently needed!

far from star: T < 200 K close to star: T > 300 K

Zhang et al. (1998) Keplerian rotation about 20 M O star

Shepherd et al. (2000) H 2 knots

Sridharan et al. (2005) disk Yao et al. (2000)

Sridharan et al. (2005)

cmH2OH2OHCO + CH 3 OH LV SiO HV H 2 NH 3 LV CO(7-6) jet/outflow structure