FLAIR meeting, GSI March 15-16 2004 Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.

Slides:



Advertisements
Similar presentations
Spin Filtering Studies at COSY and AD Alexander Nass for the collaboration University of Erlangen-Nürnberg SPIN 2008, Charlottesville,VA,USA, October 8,
Advertisements

Page 1 Collider Review Retreat February 24, 2010 Mike Spata February 24, 2010 Collider Review Retreat International Linear Collider.
Particle-Driven Plasma Wakefield Acceleration James Holloway University College London, London, UK PhD Supervisors: Professor Matthew wing University College.
Application of cooling methods at NICA project G.Trubnikov JINR, Dubna.
1 Antiprotons at FAIR FLAIR SIS 100 / 300 pbar production Capture and accumulation deceleration High Energy Storage Ring for Antitprotons (HESR): 0.8–15.
Design and Performance Expectation of ALPHA accelerator S.Y. Lee, IU 2/26/ Introduction 2. Possible CIS re-build and parameters 3. Issues in the.
A. Bay Beijing October Accelerators We want to study submicroscopic structure of particles. Spatial resolution of a probe ~de Broglie wavelength.
Antihydrogen Spectroscopy David Christian Fermilab November 17, 2007.
Intensity Limits and Beam Performances in the High-Energy Storage Ring
ALPHA Storage Ring Indiana University Xiaoying Pang.
(ISS) Topics Studied at RAL G H Rees, RAL, UK. ISS Work Areas 1. Bunch train patterns for the acceleration and storage of μ ± beams. 2. A 50Hz, 1.2 MW,
COULOMB ’05 Experiments with Cooled Beams at COSY A.Lehrach, H.J.Stein, J. Dietrich, H.Stockhorst, R.Maier, D.Prasuhn, V.Kamerdjiev, COSY, Juelich, I.Meshkov,
Measurements of accelerator beam spectrum by means of Cherenkov radiation intensity dependence on phase velocity of electromagnetic waves in optical and.
Collinear laser spectroscopy of 42g,mSc
The Production of Cold Antihydrogen w. A Brief History of Antimatter In 1928, Paul Dirac proposes antimatter with his work in relativistic quantum mechanics.
3 GeV,1.2 MW, Booster for Proton Driver G H Rees, RAL.
Source Group Bethan Dorman Paul Morris Laura Carroll Anthony Green Miriam Dowle Christopher Beach Sazlin Abdul Ghani Nicholas Torr.
1 Machine Advisory Committee Video-Conference JINR, Dubna May 20, 2009 Concept and Status of The NICA Project Nuclotron-based Ion Collider fAcility I.Meshkov.
E. Widmann, Antihydrogen GS-HFS, p. 1 LEAP03, Yokohama, March 4, 2003 Measurement of the Hyperfine Structure of Antihydrogen E. Widmann, R.S. Hayano, M.
Antiproton Physics Experiments Keith Gollwitzer -- Fermilab Antiproton Sources Accumulator Antiproton Physics Experiments –Precision measurements Method.
Research in Particle Beam Physics and Accelerator Technology of the Collaboration IKP Forschungszentrum Jülich & JINR A.N. Parfenov for the Collaboration.
High Current Electron Source for Cooling Jefferson Lab Internal MEIC Accelerator Design Review January 17, 2014 Riad Suleiman.
Plasma diagnostics using spectroscopic techniques
Proton Driver: Status and Plans C.R. Prior ASTeC Intense Beams Group, Rutherford Appleton Laboratory.
FLAR project S.L. Yakovenko JINR, Dubna,Russia. 2 Contents 1.FlAIR project 2.AD facility at CERN 3.Antyhydrogen and Positronium in-flight at FLAIR 4.LEPTA.
1 Antimatter - Rolf Landua Lecture Plan I.History of Antimatter II.Antimatter and the Universe III.Production and trapping of antiparticles IV.Precision.
Diagnostics for intense e-cooled ion beams by Vsevolod Kamerdzhiev Forschungszentrum Jülich, IKP, COSY ICFA-HB2004, Bensheim, October 19, 2004.
Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,
Lecture 3 16/9/2003 Recall Penning Trap orbits cylindrical coordinates: ( , ,z); B = constant along z radial (  ) and axial (z) electric.
The FAIR* Project *Facility for Antiproton and Ion Research Outline:  FAIR layout  Research programs Peter Senger, GSI USTC Hefei Nov. 21, 2006 and CCNU.
Progress at BNL Vitaly Yakimenko. Polarized Positrons Source (PPS for ILC) Conventional Non- Polarized Positrons: In our proposal polarized  -ray beam.
NICA start-up scenario + questions of instabilities A.Sidorin For NiCA team NICA Machine Advisory Committee at JINR (Dubna) October 19-20, 2015.
Collective effects in EDM storage ring A.Sidorin, Electron cooling group, JINR, Dubna.
Antihydrogen Trapping and Resonant Interactions, חגיגת הפיזיקה שדה בוקר אלי שריד Eli Sarid ALPHA Collaboration, CERN + NRCN, Israel Antihydrogen.
1 NICA Project Report of The Group I S.L.Bogomolov, A.V.Butenko, A.V.Efremov, E.D.Donets, I.N.Meshkov, V.A.Mikhailov, A.O.Sidorin, A.V.Smirnov, Round Table.
SEMINAR ON ANTIMATTER. INTRODUCTION Antimatter is real. Energy density of chemical reaction is 1×10  J/kg. nuclear fission is 8×10  J/kg. nuclear fusion.
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
LEPTA: Low Energy Particle Toroidal Accumulator Presented by: Mkhatshwa S. L. Nkabi N. Loqo T. Mbebe N. Supervisor: A. Sidorin SA STUDENT PRACTICE 2010.
Villars, 26 September Extra Low Energy Antiproton Ring (ELENA) for antiproton deceleration after the AD Pavel Belochitskii for the AD team On behalf.
Merritt Moore Physics 95, 2009 T R A P P E D ANTIPARTICLES.
Pushing the space charge limit in the CERN LHC injectors H. Bartosik for the CERN space charge team with contributions from S. Gilardoni, A. Huschauer,
Low Energy Antiproton Facility at CERN Christian Carli on behalf of the AD and ELENA team …. with special thanks to P.Beloshitskii, T.Eriksson and S. Maury.
Ялта Конференция Yalta-, Univ. of Tokyo, Ryo FUNAKOSHI Univ. of Tokyo Ryo FUNAKOSHI ATHENA collaboration ATHENA: a High Performance detector for.
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
BINP tau charm plans and other projects in Turkey/China A. Bogomyagkov BINP SB RAS, Novosibirsk.
Zeudi Mazzotta* On behalf of the AEgIS collaboration from Università degli studi di Milano Istituto Nazionale di Fisica Nucleare.
Slide 1 Overview Introduction Stochastic Cooling History of the Antiproton machines at CERN The AD and ELENA Conclusion.
Precision Tests of Fundamental Interactions with Ion Trap Experiments
S.M. Polozov & Ko., NRNU MEPhI
Parameters of ejected beam
Status of HESR 18th March Gießen Dieter Prasuhn.
Sara Thorin, MAX IV Laboratory
Calculation of Beam Equilibrium and Luminosities for
HIAF Electron Cooling System &
Simulation of Luminosity Variation
A.Smirnov, A.Sidorin, D.Krestnikov
Overview Lecture 2 Trapping antiprotons Antihydrogen ATHENA and ATRAP
ELENA Overview and Layout Start of ELENA Commissioning Next Steps
Siara Fabbri University of Manchester
Low Energy Positron Toroidal Accumulator
Thermal emittance measurement Gun Spectrometer
Synchrotron Ring Schematic
Capture and Transmission of polarized positrons from a Compton Scheme
ERL accelerator review. Parameters for a Compton source
ELENA Extra Low ENergy Antiproton Ring
Explanation of the Basic Principles and Goals
Physics Design on Injector I
LEPTA project Measuring lifetime of positrons
Update on ERL Cooler Design Studies
Plans for future electron cooling needs PS BD/AC
Presentation transcript:

FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna

Contents 1. Antihydrogen in-flight 2. LEPTA – the positron storage ring with electron cooling of positrons and particle “magnetization” 3. Scheme of the Antihydrogen Generator based on the LEPTA type ring 4. Possible experiments with antihydrogen in-flight 4.1. Direct comparison of the electric charges of proton, antiproton, electron and positron 4.2. Hyperfine structure of the ground state 4.3. Spectroscopy of excited states, Lamb shift measurement 4.4. Laser spectroscopy of 1S – 2S transition 5. Status of the LEPTA project 6. Conclusion

1. Antihydrogen in-flight Basic idea: G.Budker, A.Skrinsky,Uspekhi Fyz. Nauk, 124 (1978) 561

Antiproton ring e+e+ p~p~ H~H~ e  Electron cooling of antiprotons e  Electron cooling of positrons The facility general scheme Positron ring

Antihydrogen flux quality Angular and velocity spread is determined by the antiproton beam parameters - deep cooling of antiprotons “Magnetised” cooling - in absence of additional heating the equilibrium is determined by temperature of longitudinal degree of freedom of the electrons Antiproton beam ordering - ? Stability of the string coherent oscillations At 20 keV maximum antiproton number is about 10 5

Antihidrogen flux intensity Generation rate per 1 antiproton: To increase the positron beam density: - positron deceleration in the recombination section, - positron beam compression - bunched positron and antiproton beams

Magnetic field in recombination (cooling) section 1. Positron (electron) beam transport 2. Suppression of IBS in positron (electron) beam - preservation of flattened distribution 3. “Magnetised” cooling B 1 ~ 100 G B 2, B 3 ~ 1 kG

Magnetic field in recombination (cooling) section Antiproton motion distortion Larmor radius of antiprotons has to be less than recombination section: at 5 MeV and L rec = 3 m B < 1 kG at 50 keV B < 100 G At small antiproton energy and large magnetic field one needs to adjust the recombination section with antiproton ring

Scheme of The Electron Cooler at Large B: Beams Injection / Extraction

Magnetic field in positron source 1. Positron source based on Electron linac: low magnetic field 2. Positron source based on Radioactive isotope: large magnetic field

Electron beam Ta - convertor W - foils Positron flux Low energy positron source based on Electron linac

Electron energy is ~ 200 MeV Intensity is about 10 8 positrons per pulse Magnetic field < 100 G

Positron source based on radioactive isotope Positron source and moderation The efficiency of this type moderator lies in the range from 0.2 to 0.5%. The positron energy spread at the exit of moderator is about eV. The flux intensity at the exit is about 1-2  10 6 slow positrons per second Prototype is the positron part of ATHENA

Positron trapping Magnetic field ~ 1 kG Trapping efficiency is 60% Number of trapped positrons is about 10 8 Repetition period ~ 100 sec

Two basic concepts MeV Electron linac for positron production ~ 50 G magnetic field in the positron ring Positron ring circumference of m Positron energy of about 1 keV Positron deceleration to ~ 10 eV in the recombination section 2. Positron production using radioactive isotope ~ 500 G magnetic field in the positron ring Positron energy of about 10 keV Positron beam compression and deceleration in the recombination section Matching of the antiproton beam with recombination section “LEPTA - type” ring

2. LEPTA – the positron storage ring with electron cooling of positrons and particle “magnetization” I.Meshkov, A.Skrinsky, NIM A379 (1996) 41 ; NIM A391 (1997) 205 I.Meshkov, A.Sidorin, NIM A391 (1997) 216

e + trap Septum Cooling section Quadrupole Collector e-gun BB Detector e + source Low Energy Positron Toroidal Accumulator

General parameters of the LEPTA Circumference, m17.8 Positron energy, keV10.0 Solenoid magnetic field, G400 Quad field gradient, G/cm10.0 Positron beam radius, cm0.5 Number of positrons 1  10 8 Residual gas pressure, Тоrr1  10  Electron cooling system Cooling section length, m4.0 Beam current, A0.5 Beam radius, cm1.0 Electron density, cm  10 8 Orthopositronium flux parameters Intensity, atom/sec1  10  Angular spread, mrad1 Velocity spread1  10  4 Flux diameter at the ring exit, cm1.1 Decay length, m8.5

3. Scheme of the Antihydrogen Generator based on the LEPTA type ring

Scheme of The LEPTA Type Positron Ring

Facility parameters and H-bar generation #2 Positron ring Ring circumference, m 25 Recombination section length, m 3 Positron energy in the ring, keV 10 Positron beam radius in the ring, cm 0.5 Magnetic field in the positron ring, G 400 Magnetic field in the recombination section, G 1000 Positron number 10 8 Antiproton ring Energy, MeV Circumference, m Antiproton number “normal” state ordered state 3.4     10 5 Positron energy in the recombination section, keV

Facility parameters and H-bar generation (continuation) #2 Antihydrogen flux parameters Energy, MeV Generation rate per 1 antiproton 1     Flux intensity, s -1 “normal” state ordered state Angular spread “normal” state ordered state < Relative velocity spread “normal” state ordered state 10 -6

4. Possible experiments with antihydrogen in-flight I.Meshkov, Phys. Part. Nucl. 28 (1997) 496

4.1. Direct comparison of the electric charges of proton, antiproton, electron and positron - – Test of CPT Theorem The experiment concept : Detection of a displacement  x of "neutral" atoms, when they travel in a transverse magnetic field B  of the length L:  x = (  e · B   L 2 ) / (2pc),

#4.1 Charge inequality |q 1 + q 2 | / e Experiment Present Expected Theory Particles 1, 2 Electron / positron < 2· <  4   4   10 Antiproton / positron 0 ? <  2   5 (indirect) 2   9 Proton / antiproton < 2· <  2   5 2   9 Proton / electron 0 ? <  1   21 -

#4.1 “Atoms”  Position sensitive detector CsI  BB The experiment concept “The atoms” : H 0 H-bar o-Ps Required parameters Magnetic field, T Magnet length, m Detector resolution, mcm

One of the goals of the LEPTA project is the experiment EPOCC (Electron/Positron Charge Comparison) - direct comparison of the electric charges of proton, antiproton, electron and positron to exceed the present accuracy of the charge difference by two orders of magnitude : |q p + q e | / e 4  #4.1

An achievable resolution (  /  ) HFS < 3·10 – 8 Antiproton magnetic moment from (  /  ) HFS : Absolute value:  a /  a < 2·10 – 5 (presently 3·10 – 3 ) Difference with proton: |  p +  a | < 1·10 – 7 The method: Atomic interferometer with sextupole magnets Hyperfine structure of the ground state

4.3. Spectroscopy of excited states, Lamb shift measurement Hydrogen : Hyperfine structure 2S-state  /  ~ 3  10 – 7 Lamb shift of 2P-state  /  ~ 2  10 -6

E RF #4.3 Microwave spectrometry of 2 2 S 1/2  2 2 P J transitions (J = 1/2, 3/2) H-bars 2 2 S 1/2 Detector RF Cavity tuned to transition 2 2 S 1/2   1/7 s 2 2 P 1/2   1.52 ns 1 2 S 1//2 12S1/212S1/2

4.4. Laser spectroscopy of 1 2 S 1/2 – 2 2 S 1/2 transition The goal of ATHENA and ATRAP experiments at CERN :  /  < 1  Life time of the metastable 2 2 S 1/2 state ~ 1/7 s, i.e. (  /  ) natural ~ Experiment in traps with Hydrogen today (  /  ) transition ~ What about H-bars in-flight ?

#4.4 H-bar 1 2 S 1/2 Detector Laser beam 1 2 S 1/2 and 2 2 S 1/2 Mirrors Laser frequensy in the particle Rest Frame (PRF):  PRF =  Laser ·  · (1   ), Two photon energy is H-bar velocity dependent :  = 2 ћ   - scan by v H-bar ! 2 2 S 1/2 Doppler free two photon spectroscopy of 1 2 S 1/2  2 2 S 1/2 transition (principle scheme) f transition = ·10 15 Hz transition = 0.12  Laser = 0.24  RF cavity 1 2 S 1/2 2 2 S 1/2   1/7 s 2 2 P 1/2 1 2 S 1/2

2 2 S 1/2   1/7 s 2 2 P 1/2 1 2 S 1/2 #4.4 Doppler free spectroscopy of 1 2 S 1/2  2 2 S 1/2 transition Experiment parameters: Antiproton energy, MeV  = v/c H-bar flux, s -1 “normal” state ordered state Relative velocity spread  v / v : “normal” state ordered state Experiment resolution  /  ~ 0.1 of Doppler spread:  /  ~ 0.1  2  2  (  v / v) “normal” state ordered state

5. Status of the LEPTA project

October 2003: 3/4 of the ring is assembeled and traced with pulsed electron beam

6. Conclusion For technical design of the positron ring one needs: Experimental study of the particle dynamics in a ring with longitudinal magnetic field Experimental study of electron cooling of positrons Choice of the installation concept providing best conditions for experiments