Muon and Neutron Backgrounds at Yangyang underground lab. 2005. 2. 18. Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon.

Slides:



Advertisements
Similar presentations
Dante Nakazawa with Prof. Juan Collar
Advertisements

M. Carson, University of Sheffield, UKDMC ILIAS-Valencia-April Gamma backgrounds, shielding and veto performance for dark matter detectors M. Carson,
M. Carson, University of Sheffield IDM 2004, University of Edinburgh Veto performance for a large xenon detector.
Status of Ultra-low Energy HPGe Detector for low-mass WIMP search Li Xin (Tsinghua University) KIMS collaboration Oct.22nd, 2005.
Neutron background measurements at LNGS Gian Luca Raselli INFN - Pavia JRA1 meeting, Paris 14 Feb
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
th KPS meeting 1 WIMP Search with CsI(Tl) Crystals – Status and Future The Future of Dark Matter Detection Y.D. Kim ( KIMS collaboration )
Neutron background measurement at LNGS: present status Measurement carried out in collaboration between LNGS ILIAS-JRA1 and ICARUS groups.
Lee, Myeong Jae DMRC, Seoul national university
Status of WIMP search in KIMS experiment Kwak, Jungwon ( KIMS Collaboration ) The dark Side of the Universe KIAS-APCTP-DMRC Workshop in KIAS.
A screening facility for next generation low-background experiments Tom Shutt Laura Cadonati Princeton University.
Annual Modulation Study of Dark Matter Using CsI(Tl) Crystals In KIMS Experiment J.H. Choi (Seoul National University) SUSY2012, Beijing.
WIMP Search with CsI(Tl) Crystals at KIMS Sun Kee Kim Seoul National University For the KIMS Collaboration IDM 2006, Rhodes.
2004/Dec/12 Low Radioactivity in CANDLES T. Kishimoto Osaka Univ.
th KPS meeting 1 Development of Radon Monitoring Detector for the KIMS Experiment Lee, Myoung Jae DMRC, Seoul national university.
Using Reactor Anti-Neutrinos to Measure sin 2 2θ 13 Jonathan Link Columbia University Fermilab Long Range Planning Committee, Neutrino Session November.
Neutron Monitoring Detector in KIMS Jungwon Kwak Seoul National University 2003 October 25 th KPS meeting.
DEAP Part I: Andrew Hime (Los Alamos National Laboratory) DEAP Concept DEAP-0 Test-Results & Requirements of a DEAP Program Synergy with CLEAN Program.
Ultra-low background HPGe detector at ChyeongPyung Underground Laboratory TaeYeon Kim and KIMS(Korea Invisible Mass Search) Collaboration. * Contents *
Internal background of CsI(Tl) crystal detectors for dark matter search Tae Yeon Kim Seoul National University For the KIMS Collaboration Seoul National.
Assegnazioni Pd Ricercatori 11 Tecnologi 44.6 FTE.
Iwha Womans University 2005/04/22 Hyunsu Lee & Jungwon Kwak Current Limit of WIMP search with CsI(Tl) crystal in KIMS 이현수 *, 곽정원, 김상열, 김선기, 김승천,
The Recent Status of KIMS Group and New Plan Li Xin (Tsinghua University) KIMS collaboration Aug. 28th, 2006.
CTF and low background facility at Gran Sasso A. Ianni a, M. Laubenstein a and Y. Suvorov a a INFN, Gran Sasso Laboratory, Assergi (AQ), Italy The Counting.
The Study of Muon- induced Neutrons in The KIMS Experiment The Korean Physical Society J.H. Choi.
1 IDM2004 Edinburgh, 9 september 2004 Helenia Menghetti Bologna University and INFN Study of the muon-induced neutron background with the LVD detector.
Development of metal-loaded liquid scintillators for the double beta decay experiment 연세대 : 황명진, 권영준 서울대 : 곽정원, 김상열, 김선기, 김승천, 김태연, 명성숙, 방형찬, 이명재, 이직,
Underground Laboratories and Low Background Experiments Pia Loaiza Laboratoire Souterrain de Modane Bordeaux, March 16 th, 2006.
Ultra-low background gamma spectrometry 2 nd LSM-Extension Workshop, Valfréjus, 16 October 2009 Pia Loaiza Laboratoire Souterrain de Modane.
KPS Chonbuk University 2005/10/22 HYUNSU LEE Status of the KIMS dark matter search experiment with CsI(Tl) crystals Hyun Su Lee Seoul National.
Muon flux at Y2L and reconstruction of muon tracks
WIMP search Result from KIMS experiments Kim Seung Cheon (DMRC,SNU)
? At Yangyang beach, looking for something in the swamp of particles and waves. 1 The recent results from KIMS Seung Cheon Kim (Seoul National University)
Study of Double Beta Decay of 48 Ca with CANDLES Y.Hirano, T.Kishimoto, I.Ogawa, R.Hazama, S.Umehara, K.Matsuoka, G.Ito, Y.Tsubota, for the CANDLES Collaboration.
Activities on double beta decay search experiments in Korea 1.Yangyang Underground laboratory 2.Double beta decay search with HPGe & CsI(Tl) 3.Metal Loaded.
Results of the NEMO-3 experiment (Summer 2009) Outline   The  decay  The NEMO-3 experiment  Measurement of the backgrounds   and  results.
1 Muon Veto System and Expected Backgrounds at Dayabay Hongshan (Kevin) Zhang, BNL DayaBay Collaboration DNP08, Oakland.
Nuclear Chemistry. The Atom The atom consists of two parts: 1. The nucleus which contains: 2. Orbiting electrons. protons neutrons.
The COBRA Experiment Jeanne Wilson University of Sussex, UK On behalf of the COBRA Collaboration TAUP 2007, Sendai, Japan.
1 LTR 2004 Sudbury, December 2004 Helenia Menghetti, Marco Selvi Bologna University and INFN Large Volume Detector The Large Volume Detector (LVD)
1 Study of 48 Ca Double Beta Decay by CANDLES T. Kishimoto Osaka Univ.
Recent Results from RENO NUFACT2014 August. 25 to 30, 2014, Glasgow, Scotland, U.K. Hyunkwan Seo on behalf of the RENO Collaboration Seoul National University.
Second Workshop on large TPC for low energy rare event detection, Paris, December 21 st, 2004.
Research Program and Status of KIMS Sun Kee Kim Seoul National University Yongpyung, Jan. 29, 2004.
SrCl 2 crystal for EC/  + search Presented by J.H. So (KNU)
PyungChang 2006/02/06 HYUNSU LEE CsI(Tl) crystals for WIMP search Hyun Su Lee Seoul National University (For The KIMS Collaboration)
Sep. 22, 2011 Seoul National University Jae Keum Lee KIMS Background 1 China-Korea Workshop 2011 September 22-23, 2011.
A simulation study on DBD search with pilot setup AMoRE - SNU jilee.
Development of CaMoO 4 Scintillation Crystals for the 0-  decay search 1.Introduction 2.CaMoO4 Crystal R&D 3.YangYang underground laboratory for KIMS.
DPF-JPS 2006 Oct 31, Hawaii 1 CANDLES system for the study of 48-Ca double beta decay T. Kishimoto Osaka Univ.
09/04/2006NDM061 CANDLES for the study of 48 Ca double beta decay OGAWA Izumi ( 小川 泉 ) Osaka Univ. ( 大阪大学 )
Double Chooz Experiment Status Jelena Maricic, Drexel University (for the Double Chooz Collaboration) September, 27 th, SNAC11.
WIMPs Direct Search with Dual Light-emitting Crystals Xilei Sun IHEP International Symposium on Neutrino Physics and Beyond
Status of ULE-HPGe Experiment for WIMP Search in YangYang
Fast neutron flux measurement in CJPL
On behalf of TEXONO collaboration
Activities on double beta decay search at KIMS
Measurement of surface radioactivity by Alpha/Beta detection
Double Beta Decay of 48Ca with CaF2(Eu) - ELEGANT VI -
Status of 100Mo based DBD experiment
Muon and Neutron detector of KIMS experiment
Very preliminary study of the random background for the BiPo detector (PhoSwich configuration) Work done by Jonathan Ferracci.
CRESST Cryogenic Rare Event Search with Superconducting Thermometers
2nd International Workshop on Double Beta Decay
Sr-84 0n EC/b+ decay search with SrCl2 crystal
Status of Neutron flux Analysis in KIMS experiment
Study of Muon-induced Neutrons in the KIMS Experiment
Neutron Beam Test for Measuring Quenching Factor of CsI(Tl) Crystal
Davide Franco for the Borexino Collaboration Milano University & INFN
The 0-neutrino double beta decay search
Presentation transcript:

Muon and Neutron Backgrounds at Yangyang underground lab Muju Workshop Kwak, Jungwon Seoul National University 1.External Backgrounds 2.Muon flux in Yangyang underground lab. 3.Neutron background study 4.Conclusion

MuJu workshop2 External backgrounds 1.External gamma  Isotopes in surrounding materials (Rock) Decay chain of U 238 and Th 232 Isotopes (K 40, … ) Rn 222 in air  Shielding structure made of pure and high Z materials  Improve PSD power of CsI crystal detector  N 2 flowing to remove air contaminated by Rn Neutron  Undistinguishable with WIMP (Nuclear recoil) (n,  ) reaction Nuclear fission Induced by cosmic muon (~ 200GeV) In shield - possible to veto In Rock - impossible to veto  Neutron shield of High Hydrogen density material  Veto using Muon detector  Underground experimental lab

MuJu workshop3 KIMS Main shield in Y2L CSI Pb shield (15cm) PE shield (5cm) Copper shield (10cm ) Mineral Oil shield (30cm) NMD MUD Mineral oil 30cm Pb 15cm : 30t OFHC Cu 10cm : 3t PE 5cm HPGe detector measurement

MuJu workshop4 Muon flux in Yangyang underground lab. (1) MUD MUD 2MUD 3MUD 1 MUD 7 MUD 4 MUD 6 MUD 5 MUD 8  2 x 2 ” PMT for each channel muon modules  28 signal channels ( x x 2 )  Liquid Scintillator 5 % PC 1 liter + PPO 4 g + POPOP 15 mg  Mineral Oil 95 % - Neutron shield  times of ground Muon rate at 700 m deep underground

MuJu workshop5 Muon flux in Yangyang underground lab. (2)  Attenuation length  Fast components ~ 50 cm ~ Distance between PMTs  Slow components ~ 250 cm ~ Size of Muon detector  Muon Efficiency = 98.1 %  Cosmic Muon rate at Ground level ~ cm -2 s -1  Coincidence of two trigger detectors

MuJu workshop6 Muon flux in Yangyang underground lab. (3) Muon flux [cm -2 m -1 ] Time [days] Net DAQ time = days Total muon events Muon flux = 4.30 x cm -2 s -1 Energy [MeV]

MuJu workshop7 Muon flux in Yangyang underground lab. (4) mud5 mud4mud4 mud7 mud6mud6 Lab is here

MuJu workshop8 Neutron background study (1-1)  Use 1 liter BC501A Liquid Scintillator  Teflon container ( 10  x 18 cm )  Quartz window and low background 3 “ PMT  Backgrounds of Neutron detector  Very small neutron flux measurement  Gamma  External radioactive source and internal radioactive impurity Development new PSD method  Alpha  238 U and 232 Th impurities in Liquid Scintillator  Coincidence study of decay chains

MuJu workshop9 P  i and P n i Normalized distribution of accumulated pulse shape P n i - P  i Bin by bin difference of probability function Neutron background study (1-2) Bin number i ( 1 bin = 2 ns ) FOM OldNew

MuJu workshop10 Neutron background study (2)  Use the data of 67.4 days DAQ period  Energy Threshold 300 keV  Stable PSD power

MuJu workshop11 Energy [MeV]  Inside of shield for days  Suspect the most of the events in neutron region are  backgrounds  Check the coincidence of 238 U and 232 Th decay chains Energy [MeV] Neutron background study (3)

MuJu workshop U decay chain Beta Alpha 22.4 y d d 210 Pb 210 Bi 210 Po 210 Pb Alpha Beta Alpha 1600 y d 3.10 m 26.8 m 19.9 m us 226 Ra 222 Rn 218 Po 214 Pb 214 Bi 214 Po 226 Ra 4.770Alpha7.538 E+4 y 230 Th 4.859Alpha2.455 E+5 y 234 U (0.08) Alpha Beta Beta (IT) Beta E+9 y d 1.18 m 6.70 h 238 U 234 Th 234 Pa * 234 Pa 238 U Q-value (MeV) DecayLifetimeIsotopeFamily in 238 U

MuJu workshop Th decay chain Beta (64.06%) Alpha (35.94%) Alpha Beta m 299 ns m 212 Bi 212 Po 208 Tl 212 Bi Alpha Beta y 3.66 d 55.6 s s h 228 Th 224 Ra 220 Rn 216 Po 212 Pb 228 Th Alpha Beta E+10 y 5.75 y 6.15 y 232 Th 228 Ra 228 Ac 232 Th Q-value (MeV) DecayLifetimeIsotopeFamily in 232 Th

MuJu workshop14 Neutron background study (4) – 238 U and 232 Th chain 214 Bi -decay  214 Po -decay 222 Rn -decay  218 Po -decay Coincidence time [m] Coincidence time [ms] 220 Rn -decay  216 Po -decay Coincidence time [m]

MuJu workshop15 Neutron background study (5) - coincidence 553 events of 222 Rn -decay  218 Po -decay events ( 1341 events of background ) 26 events of 220 Rn -decay  216 Po -decay events -coincidence 471 events of 214 Bi -decay  214 Po -decay Efficiency correction 534=471/0.976/ events 230 Ra dominant contamination in 238 U chain cnts/liter/day – 1.5 x10 -6 ppt of 230 Ra level 232 Th dominant contamination in 232 Th chain cnts/liter/day ppt of 232 Th level 2722 (all events) – 2851 (expected alpha) = neutron cnts/liter/day less than 1.8 cnts /day/liter (90 %CL) of neutron background inside of shield.

MuJu workshop16 Neutron background study (6) Real Alpha Energy [MeV] Gamma equivalent Alpha Energy [MeV] Equilibrium from 238UEquilibrium from 226Ra  Quenching factor using tagged Alpha events  Decay chain in equilibrium from 226 Ra

MuJu workshop17  Neutron rate outside of shield 8 x 10 –7 /cm 2 /s ( 1.5 < E neutron < 6 MeV )  Subtract energy spectrum inside of shield to reject internal background from real neutron Energy [MeV] Neutron background study (7)

MuJu workshop18 Conclusion 1. Muon Flux measurement  4.3 x m -2 s -1  Stable flux - no modulation 2. Neutron Flux measurement  Inside shield < 1.8 cnts/liter/day (90% CL)  Outside shield = 8 x cm -2 s -1 (1.5 ~ 6 MeV )  Alpha ( 226 Ra decay chain) dominant internal background Kims(Korea)