Genetic and environmental factors that affect gestation length H. D. Norman, J. R. Wright, M. T. Kuhn, S. M. Hubbard,* and J. B. Cole Animal Improvement.

Slides:



Advertisements
Similar presentations
Factors affecting milk ELISA scores of cows tested for Johne’s disease H. D. Norman 1, J. R. Wright 1 *, and T. M. Byrem 2 1 Animal Improvement Programs.
Advertisements

Relationship of somatic cell score with fertility measures Poster 1390 ADSA 2001, Indiannapolis R. H. Miller 1, J. S. Clay 2, and H. D. Norman 1 1 Animal.
2002 Paul M. VanRaden and Ashley H. Sanders Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD
Impact of selection for increased daughter fertility on productive life and culling for reproduction H. D. Norman, J. R. Wright*, R. H. Miller Animal Improvement.
Breed composition of the United States dairy cattle herd R. L. Powell,* H. D. Norman, and J. L. Hutchison Animal Improvement Programs Laboratory, Agricultural.
2006 J.B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Genetic.
J. B. Cole 1, P. D. Miller 2, and H. D. Norman 1 1 Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD 2 Department.
Use of cow culling to help meet compliance for somatic cell standards H. D. Norman and J. R. Wright * Animal Improvement Programs Laboratory, Agricultural.
2005 ADSA/ASAS/CSAS meeting (1) Historical examination of culling of dairy cows from herds in the United States H. DUANE NORMAN, E. HARE, and J.R. WRIGHT.
ADSA 2002 (HDN-P1) 2002 Comparison of occurrence and yields of daughters of progeny-test and proven bulls in artificial insemination and natural- service.
2003 Paul VanRaden, Melvin Tooker,* Ashley Sanders, and George Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville,
Changes in the use of young bulls K. M. Olson* 1, J. L. Hutchison 2, P. M. VanRaden 2, and H. D. Norman 2 1 National Association of Animal Breeders, Columbia,
2001 ADSA annual meeting, July 2001 (1) Timeliness of progeny-testing through AI and percentage of bulls returned to service (abstract 1020) H.D. NORMAN,*
George R. Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD National Association.
2007 ADSA 2007 (1)H.D. Norman Effect of service sire and cow sire on gestation length H.D. Norman,* J.R. Wright, P.M. VanRaden, and J.B. Cole Animal Improvement.
 PTA mobility was highly correlated with udder composite.  PTA mobility showed a moderate, positive correlation with production, productive life, and.
Performance of Holsteins that originated from embryo transfer or twin births H.D. Norman, J.R. Wright* and R.L. Powell Animal Improvement Programs Laboratory,
Comparison of Holstein service-sire fertility for heifer and cow breedings with conventional and sexed semen H. D. Norman*, J. L. Hutchison, and P. M.
2002 ADSA 2002 (HDN-1) H.D. NORMAN* ( ), R.H. MILLER, P.M. V AN RADEN, and J.R. WRIGHT Animal Improvement Programs.
Norway (1) 2005 Status of Dairy Cattle Breeding in the United States Dr. H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service,
Assessment of voluntary waiting period and frequency of estrus synchronization among herds R.H. Miller, 1, * H.D. Norman, 1 M.T. Kuhn, 1 and J.S. Clay.
Breed Composition Codes for Crossbred Dairy Cattle in the United States John B. Cole,* Melvin E. Tooker, Paul M. VanRaden, and Joel H. Megonigal, Jr. Animal.
H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD NDHIA San Antonio.
H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Missouri Dairy Summit.
John B. Cole, Ph.D. Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD, USA The U.S. genetic.
2007 J.B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Overview.
Genetic correlations between first and later parity calving ease in a sire-maternal grandsire model G. R. Wiggans*, C. P. Van Tassell, J. B. Cole, and.
2005 Paul VanRaden Animal Improvement Programs Laboratory, USDA Agricultural Research Service, Beltsville, MD, USA Selection for.
Genetic Evaluation of Lactation Persistency Estimated by Best Prediction for Ayrshire, Brown Swiss, Guernsey, and Milking Shorthorn Dairy Cattle J. B.
Synchronization Effects on Parameters for Days Open M. T. Kuhn, J. L. Hutchison, and R. H. Miller* Animal Improvement Programs Laboratory, Agricultural.
2003 Melvin Tooker, Paul VanRaden, Ashley Sanders, and George Wiggans Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville,
2007 J.B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Genetic Evaluation.
Paul VanRaden and Melvin Tooker* Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD 2006.
Effect of temperature and humidity on gestation length H.D. Norman, J.R. Wright,* and J.B. Cole Animal Improvement Programs Laboratory, Agricultural Research.
Accuracy of reported births and calving dates of dairy cattle in the United States Poster 1705 ADSA 2001, Indiannapolis H. D. Norman *,1, J. L. Edwards,
Factors that affect abortion frequency in dairy herds in the United States R.H. Miller,* M.T. Kuhn, H.D. Norman, J.R. Wright Animal Improvement Programs.
2006 Mid-Atlantic Dairy Grazing Conference, 2006 (1) Is There a Need for Different Genetics in Dairy Grazing Systems? H. D. Norman, J. R. Wright, R. L.
2006 H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD
Dr. George R. Wiggans, Ph.D. Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD, USA
J. B. Cole *, G. R. Wiggans, P. M. VanRaden, and R. H. Miller Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville,
Paul VanRaden and John Cole Animal Improvement Programs Laboratory Beltsville, MD, USA 2004 Planned Changes to Models and Trait Definitions.
H.D. Norman* and J.L. Hutchison Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD , USA
H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD NDHIA 2009 meeting.
H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA Beltsville, MD , USA EAAP.
2003 Paul VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Genetic Evaluation.
Minimum Dry Period Length to Maximize Performance M. T. Kuhn*, J. L. Hutchison, and H. D. Norman Animal Improvement Programs Laboratory, Agricultural Research.
Multi-trait, multi-breed conception rate evaluations P. M. VanRaden 1, J. R. Wright 1 *, C. Sun 2, J. L. Hutchison 1 and M. E. Tooker 1 1 Animal Genomics.
ADSA 2002 (RHM-P1) 2002 R.H. Miller, ,1 H.D. Norman, 1 and J.S. Clay 2 1 Animal Improvement Programs Laboratory, Agricultural Research Service, USDA,
2002 George R. Wiggans and Curt P. Van Tassell Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD
H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD California Dairy Herd.
2005 Paul VanRaden and Mel Tooker Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Genetic.
H.D. Norman* J.R. Wright, P.M. VanRaden, and M.T. Kuhn Animal Improvement Programs Laboratory Agricultural.
2006 Paul VanRaden Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Predicting Genetic.
2004 P.M. VanRaden, M.E. Tooker*, and J.B. Cole Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD
Effects of dam’s dry period length on heifer development H. D. Norman and J. L. Hutchison* Animal Improvement Programs Laboratory, Agricultural Research.
2001 ADSA Indianapolis 2001 (1) Heterosis and Breed Differences for Yield and Somatic Cell Scores of US Dairy Cattle in the 1990’s. PAUL VANRADEN Animal.
H.D. Norman*, J.L. Hutchison, and J.R. Wright Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD
C.P. Van Tassell 1, * G.R. Wiggans 1, J.C. Philpot 1, and I. Misztal Animal Improvement Programs Laboratory Agricultural Research Service, USDA,
H. Duane Norman Animal Improvement Programs Laboratory Agricultural Research Service, USDA, Beltsville, MD Dairy Cattle Reproductive.
CRI – Spanish update (1) 2010 Status of Dairy Cattle Breeding in the United States Dr. H. Duane Norman Animal Improvement Programs Laboratory Agricultural.
2001 ASAS/ADSA 2001 Conference (1) Simultaneous accounting for heterogeneity of (co)variance components in genetic evaluation of type traits N. Gengler.
2006 8th World Congress on Genetics Applied to Livestock Production (1) Trait Selection When Culling U.S. Holsteins H.D. Norman, J.L. Hutchison, J.R. Wright,
A National Sire Fertility Index
Abstr. M65 Test-day milk loss associated with elevated test-day somatic cell score R.H. Miller, H.D. Norman, G.R. Wiggans, and J.R. Wright Animal Improvement.
Data Holstein breedings from 2006 through 2008 Total breedings
Percent of total breedings
Abstr. M4 Merit of obtaining genetic evaluations of milk yield for each parity on Holstein bulls H.D. Norman, J.R. Wright,* R.L. Powell, and P.M. VanRaden.
Effectiveness of genetic evaluations in predicting daughter performance in individual herds H. D. Norman 1, J. R. Wright 1*, C. D. Dechow 2 and R. C.
Reproductive trends of dairy herds in the United States
Relationship of gestation length to stillbirth
Presentation transcript:

Genetic and environmental factors that affect gestation length H. D. Norman, J. R. Wright, M. T. Kuhn, S. M. Hubbard,* and J. B. Cole Animal Improvement Programs Laboratory, Agricultural Research Service, USDA, Beltsville, MD Abstr. T73 INTRODUCTION GL is interval from conception to subsequent parturition Factors sometimes reported to be related to GL:  Breed  Calf gender  Milk yield  Calving age  Multiple births  Cow’s sire  Parity  Stillbirth  Service sire  Season  Dystocia Objective is to document effects of genetic and environmental factors on GL for current US dairy population DATA Lactation, reproductive, and dystocia records from USDA national dairy database Inseminations after February 1998 that resulted in parturitions before January 2006 Gestations ≤15 d different from breed mode Conceptions (no.): CONCLUSIONS Conception year had almost no effect on GL Calves conceived during autumn are born about 2 d earlier than calves conceived during spring For single-calf births, females are born 1 to 2 d earlier than males Twins are born about 5 d earlier than single calves Within parity, younger animals calve sooner GL decreases slightly ( ~ 0.3 d/100 DIM for Holsteins and Jerseys) as lactation length increases GL increases slightly ( ~ 0.1 d/1,000 kg milk for Holsteins and Jerseys) as milk yield increases Holstein service-sire GL heritability (34%) similar to that assumed for yield traits Holstein cow sire GL heritability (12%) similar to that for productive life, service-sire calving ease, and service- sire stillbirth More accurate prediction of calving date should aid herd managers in meeting management and health requirements of pregnant cows RESULTS (continued) Conception season effect: Parturition code effect: Age-within-parity effect: Lactation length effect for cows: INTERPRETIVE SUMMARY Information on >9 million gestations of US dairy cows was examined. Mean gestation length (GL) was ~ 280 d for Holsteins and Jerseys but as high as 288 d for Brown Swiss. Shorter GL was associated with young cows, autumn conceptions, multiple births, and heifer calves. More accurate prediction of calving date may aid dairy producers in managing maternity operations more efficiently. BreedHeifersCows Ayrshire71135,611 Brown Swiss1,70471,517 AI service sire1,24822,824 Guernsey65038,505 Holstein360,6838,494,57 3 AI service sire311,5515,245,25 1 Jersey14,187618,492 AI service sire10,887239,324 Milking Shorthorn608,022 Red & White34818,176 ANALYSIS GL =calf conception year (4 heifer groups, 8 cow groups) + calf conception herd-year (absorbed) + calf conception month (Jan., Feb., etc.) + calf parturition code (8 groups based on multiple birth status and gender) + age within parity at conception (5 heifer groups, 17 cow groups) + lactation length (7 groups) + milk yield (5 groups) + service sire (random) + cow sire (random) + cow (random) + residual (random) Separate analyses by breed (no crossbreds for Brown Swiss, Holstein, and Jersey) RESULTS GL mean ± SD (d): Conception year effect for cows: BreedHeifersCows Ayrshire ± ± 5.5 Brown Swiss ± ± 6.2 AI service sire ± ± 5.8 Guernsey ± ± 5.6 Holstein ± ± 5.7 AI service sire ± ± 5.3 Jersey ± ± 5.2 AI service sire ± ± 4.9 Milking Shorthorn ± ± 6.8 Red & White ± ± 6.2 RESULTS (continued) Milk yield effect for cows: Holstein heritability estimates based on all heifers and cows:  Service sire:34%  Cow sire:12%