Orbit Correctors in D2 and Q4 Update J. Rysti and E. Todesco 1 4/11/2014.

Slides:



Advertisements
Similar presentations
Q1 for JLAB’s 12 Gev/c Super High Momentum Spectrometer S.R. Lassiter, P.B. Brindza, M. J. Fowler, S.R. Milward, P. Penfold, R. Locke Q1 SHMS HMS Q2 Q3.
Advertisements

Hall C SHMS Fringe Field Analysis Michael Moore Hall C Winter Meeting
D2 conceptual design and field quality optimization Ramesh Gupta, BNL Slide No. 1 Nov. 13, 2013 D2 Conceptual Design and Field Quality.
1 TTF Superconducting Quadrupole Doublet Simulation with MAFIA to compare with Measurements Michaela Marx 27 March 2006.
Quadrupole Magnetic Design for an Electron Ion Collider Paul Brindza May 19, 2008.
IR Magnets for SuperKEKB KEK, Norihito Ohuchi 1.IR Magnets (ES, QCS, QC1) 2.Interference between Magnet-Cryostats and Belle 3.Summary SuperB.WS05.Hawaii.
Hybrid QD0 Studies M. Modena CERN Acknowledgments: CERN TE-MSC CLIC Magnets Study Team: A.Aloev, E. Solodko, P.Thonet, A.Vorozhtsov “CLIC/ILC QD0” Meeting.
BROOKHAVEN SCIENCE ASSOCIATES Abstract Magnetic Specifications and Tolerances Weiming Guo, NSLS-II Project In this presentation I briefly introduced the.
Superconducting Large Bore Sextupole for ILC
E. Todesco PROPOSAL OF APERTURE FOR THE INNER TRIPLET E. Todesco CERN, Geneva Switzerland With relevant inputs from colleagues F. Cerutti, S. Fartoukh,
Magnets for muon collider ring and interaction regions V.V. Kashikhin, FNAL December 03, 2009.
Options for Final Focusing Quadrupoles Michele Modena CERN TE-MSC Many thanks for the contributions of: J. Garcia Perez, H. Gerwig, C. Lopez, C. Petrone,
Permanent Magnet Quadrupoles for the CLIC Drive Beam Jim Clarke, Norbert Collomb, Neil Marks, James Richmond, and Ben Shepherd STFC Daresbury Laboratory,
S.J. Brooks RAL, Chilton, OX11 0QX, UK Extending FETS with a Ring Electron models are not sufficient for simulating the beam.
CEA DSM Irfu - F. KIRCHER - [Seoul Workshop, Feb 16-18, 2009] 1 ILD detector magnet: LoI version F. Kircher, O. Delferrière CEA Saclay, DSM/Irfu/SACM.
Optimization of Field Error Tolerances for Triplet Quadrupoles of the HL-LHC Lattice V3.01 Option 4444 Yuri Nosochkov Y. Cai, M-H. Wang (SLAC) S. Fartoukh,
R. Bonomi R. Kleindienst J. Munilla Lopez M. Chaibi E. Rogez CERN Accelerator School, Erice 2013 CASE STUDY 1: Group 1C Nb 3 Sn Quadrupole Magnet.
GROUP C – Case study no.4 Dr. Nadezda BAGRETS (Karlsruhe Institute of Technology) Dr. Andrea CORNACCHINI (CERN EN Dept.) Mr. Miguel FERNANDES (CERN BE.
Sketching Basic Kicker System Parameters W. Bartmann, T. Fowler, B. Goddard, T. Kramer.
CLIC Workshop th -17 th October 2008 Thomas Zickler AT/MCS/MNC 1 CLIC Main Linac Quadrupoles Preliminary design of a quadrupole for the stabilization.
EMMA: Pulsed magnets Kiril Marinov MaRS group, ASTeC, Daresbury Laboratory 1.
11 T Dipole Project Goals and Deliverables M. Karppinen on behalf of CERN-FNAL collaboration “Demonstrate the feasibility of Nb3Sn technology for the DS.
Consolidation of the Booster Injection Quadrupole Magnets (part 2) A. Aloev 14 th February 2013.
Update on Q4 DSM/IRFU/SACM The HiLumi LHC Design Study (a sub-system of HL-LHC) is partly funded by the European Commission within the Framework Programme.
16 T Dipole Design Options: Input Parameters and Evaluation Criteria F. Toral - CIEMAT CIEMAT-VC, Sept. 4th, 2015.
Cold test of SIS-300 dipole model Sergey Kozub Institute for High Energy Physics (IHEP), Protvino, Moscow region, Russia.
D2 CONFIGURATIONS P.Fabbricatore & S.Farinon INFN Genova  Starting from previous studies done at CERN, BNL and BLNL, possile cross sections of D2 dipole.
FCC week March 2015 Marriott Georgetown Hotel D2 for FCC P.Fabbricatore INFN Genova D2 for FCC P.Fabbricatore & S.Farinon INFN Genova Presented.
CLIC Stabilisation Day’08 18 th March 2008 Thomas Zickler AT/MCS/MNC/tz 1 CLIC Quadrupoles Th. Zickler CERN.
Correctors magnets V. Zubko, IHEP, Protvino SIS 300 Pre-consortium Meeting Thursday 19 March 2009, Protvino.
DESIGN STUDIES IR Magnet Design P. Wanderer LARP Collaboration Meeting April 27, 2006.
Super Fragment Separator (Super-FRS) Machine and Magnets H. Leibrock, GSI Darmstadt Review on Cryogenics, February 27th, 2012, GSI Darmstadt.
CERN –GSI/CEA MM preparation meeting, Magnetic Measurements WP.
HL-LHC Meeting, November 2013D2 Status and Plans – G. Sabbi 1 D2 Conceptual Design Status and Next Steps G. Sabbi, X. Wang High Luminosity LHC Annual Meeting.
CONCEPTUAL DESIGN OF D2 MECHANICAL STRUCTURE (DOUBLE COLLARING OPTION) S. Farinon, P. Fabbricatore (INFN-Sezione di Genova) Sept. 24 th 2015.
FNAL Workshop, July 19, 2007 ILC Main Linac Superconducting Quadrupole V.Kashikhin 1 ILC Main Linac Superconducting Quadrupole (ILC HGQ1) V. Kashikhin.
September 27, 2007 ILC Main Linac - KOF 1 ILC Main Linac Superconducting Quadrupole V. Kashikhin for Magnet group.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS multiplet field.
GSI Helmholtzzentrum für Schwerionenforschung GmbH Super-FRS magnet configurations.
Design ideas for a cos(2q) magnet
Massimo Sorbi on behalf of INFN team:
MQXC Nb-Ti 120mm 120T/m 2m models
High Gradient Magnet Design for SPring-8 Upgrade Plan
HO correctors update Massimo Sorbi and Marco Statera
Alexander Kalimov, State Polytechnic University, St.-Petersburg
Hervé Allain, R. van Weelderen (CERN)
EFREMOV INSTITUTE SAINT PETERSBURG RUSSIA
Hervé Allain, R. van Weelderen (CERN)
FRESCA2 Update on the dipole design and new calculations
EuroCirCol: 16T dipole based on common coils
DS11 T Transfer function, integral field and coil length
Main magnets for PERLE Test Facility
D2 and Q4 orbit corrector status
DOE/SC Status Review of 12 GeV SHMS HB Magnet: Update since Oct 2015
Large aperture Q4 M. Segreti, J.M. Rifflet
11T Dipole for the LHC Collimation upgrade
DESIGN OPTIONS FOR ORBIT CORRECTORS IN D2 and Q4
High Precision Magnet Production for NSLSII at IHEP
P.Fabbricatore & S.Farinon
Large aperture Q4 M. Segreti, J.M. Rifflet
PROPOSAL OF APERTURE FOR THE INNER TRIPLET
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
Conceptual design of superconducting correctors for Hi-Lumi Project (v2) F. Toral - CIEMAT CIEMAT, March 7th, 2013.
Design of Nb3Sn IR quadrupoles with apertures larger than 120 mm
Q4 development M. Segreti, J.M. Rifflet, E. Todesco
J. García, F. Toral (CIEMAT) P. Fessia (CERN)
CEPC Collider Magnets CHEN, Fusan November 13, 2018.
CEPC Booster Ring Magnets
Magnet design, field calculations
Orbit Correctors in D2 and Q4 Design options
Presentation transcript:

Orbit Correctors in D2 and Q4 Update J. Rysti and E. Todesco 1 4/11/2014

Requirements Integrated field 4.5 Tm (dual 3 T & 1.5 m). Multipoles below 10 units at all operational fields and configurations. Apertures operated completely independently. Cross-talk problem. Evolution of design parameters: 2 4/11/2014 Aperture:105 mm100 mm105 mm Beam distance: 194 mm194 mm188 mm

Solutions 3 4/11/2014 H/V configuration. Use FeCo alloys, which have high saturation inductions. Lower the maximum operational field so that multipoles < 10 units (make longer magnets).

FeCo alloys 4 4/11/2014

FeCo alloys 5 4/11/2014 High saturation fields (~ 2.4 T). Best performance: 49% Fe, 49% Co, 2% V. Must be heat treated at around 900 ° C. Magnetic properties somewhat sensitive to stress. Low temperature data missing... Never used for superconducting magnets before. Heat-treated FeCo materials cost ~ 80 €/kg.

Collar thickness & FeCo vs. Fe 6 4/11/ mm collar thickness25 mm collar thickness

Multipoles 7 4/11/2014 Both apertures powered equally Ref. radius = 2/3 aperture

Multipoles 8 4/11/2014 Multipoles in aper. 2, when aper. 1 is powered

FeCo alloys 9 4/11/2014 Heat-treated FeCo materials cost ~ 80 €/kg. Entire yoke FeCo (using 100 €/kg) ~ €. FeCo not needed everywhere => ~ €. In the example on the right, multi- poles below 10 up to 2.7 T.

Laminated iron/steel collars? Make the ”floating collars” from iron. Iron closer to the coils, stacking factor 0.5. However, would cause saturation at lower fields -> worse field quality (self-saturation). 10 4/11/2014

Mechanical study 16 mm collars enough? 11 4/11/2014 Iron yoke in the magnetic simulation (3 kA, 2.6 T), no yoke in structural.

To be done More mechanical analysis. Thermal properties. 3D effects on field quality. Remarks: If max. operational fields lowered from 3 T to 2.8 T => +10 cm to magnet length 2.5 T => +30 cm to magnet length 2 T => +75 cm to magnet length 12 4/11/2014

Extra slides 4/11/