Wireless Networks Instructor: Fatima Naseem Lecture # 02

Slides:



Advertisements
Similar presentations
Antennas and Propagation
Advertisements

Antennas Lecture 9.
ECE 4321 Computer Networks Chapter 4 Transmission Media: Wireless.
Antennas and Propagation
Department of Electronic Engineering City University of Hong Kong EE3900 Computer Networks Data Transmission Slide 1 Continuous & Discrete Signals.
Protocols and the TCP/IP Suite Chapter 4 (Stallings Book)
By Ya Bao b/acs1 Antennas and Propagation ( William Stallings, “Wireless Communications and Networks” 2nd Ed, Prentice-
Protocols and the TCP/IP Suite
EE 4272Spring, 2003 EE4272: Computer Networks Instructor: Tricia Chigan Dept.: Elec. & Comp. Eng. Spring, 2003.
ECEN 619 “Internet Protocols and Modeling” Course Materials: Papers, Reference Texts: Bertsekas/Gallager, Stuber, Stallings, etc Lecture notes and Paper.
Electromagnetic Wave Theory
Propagation characteristics of wireless channels
Lecture Notes #5 Antennas and Propagation
Antennas and Propagation
OIS Model TCP/IP Model.
Lecturer: Tamanna Haque Nipa
Lecture slides prepared for “Business Data Communications”, 7/e, by William Stallings and Tom Case, Chapter 8 “TCP/IP”.
Wireless Transmission Fundamentals (Physical Layer) Professor Honggang Wang
Noise and SNR. Noise unwanted signals inserted between transmitter and receiver is the major limiting factor in communications system performance 2.
Protocols and the TCP/IP Suite Chapter 4. Multilayer communication. A series of layers, each built upon the one below it. The purpose of each layer is.
Radio Communication EE4220 Communications system Dr. Hassan Yousif Electrical Engineering Department College of Engineering Salman Bin Abdulaziz University.
Antennas and Propagation
1 Business Telecommunications Data and Computer Communications Chapter 3 Data Transmission.
Transmission Media, Antennas and Propagation. Classifications of Transmission Media Transmission Medium Physical path between transmitter and receiver.
What is a Protocol A set of definitions and rules defining the method by which data is transferred between two or more entities or systems. The key elements.
Protocols and the TCP/IP Suite
Basic Antenna Theory and Concepts
CSE5807 Wireless and Personal Area Networks Lecture 2 Radio Communications Principles Chapters 2,5 and 11 Stallings.
Lect1..ppt - 01/06/05 CDA 6505 Network Architecture and Client/Server Computing Lecture 2 Protocols and the TCP/IP Suite by Zornitza Genova Prodanoff.
Lecture 3: Networks and Protocols Anders Västberg Slides are a selection from the slides from chapter 3 and 4 from:
Department of Electronic Engineering City University of Hong Kong EE3900 Computer Networks Introduction Slide 1 A Communications Model Source: generates.
The OSI Model.
ECEN “Internet Protocols and Modeling” Course Materials: Papers, Reference Texts: Bertsekas/Gallager, Stuber, Stallings, etc Grading (Tentative):
1 Chapter 5. Antennas and Propagations Wen-Shyang Hwang KUAS EE.
Transmission Media, Antennas and Propagation Chapter 5.
By Ya Bao1 Antennas and Propagation. 2 By Ya Bao Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic.
Asstt. Professor Adeel Akram. Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy.
Chapter 2 Protocols and the TCP/IP Suite 1 Chapter 2 Protocols and the TCP/IP Suite.
William Stallings Data and Computer Communications
Antennas and Propagation Chapter 5. Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic.
Electromagnetic Spectrum
CHAPTER 4 PROTOCOLS AND THE TCP/IP SUITE Acknowledgement: The Slides Were Provided By Cory Beard, William Stallings For Their Textbook “Wireless Communication.
Antennas and Propagation Chapter 5. Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic.
General Frequency Ranges Microwave frequency range –1 GHz to 40 GHz –Directional beams possible –Suitable for point-to-point transmission –Used for satellite.
1 Chapter 4. Protocols and the TCP/IP Suite Wen-Shyang Hwang KUAS EE.
Net 221D:Computer Networks Fundamentals
1 3. Data Transmission. Prof. Sang-Jo Yoo 2 Contents  Concept and Terminology  Analog and Digital Data Transmission  Transmission Impairments  Asynchronous.
Antennas and Propagation Chapter 5. Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic.
ECEN “Internet Protocols and Modeling” Course Materials: Papers, Reference Texts: Bertsekas/Gallager, Stuber, Stallings, etc Lecture notes and.
Stallings, Wireless Communications & Networks, Second Edition, © 2005 Pearson Education, Inc. All rights reserved Antennas and Propagation.
Network Models. The OSI Model Open Systems Interconnection (OSI). Developed by the International Organization for Standardization (ISO). Model for understanding.
Signal Propagation Basics
By Saneeju m salu. Radio waves are one form of electromagnetic radiation RADIO WAVES.
Shambhu J Upadhyaya 1 Shambhu Upadhyaya Computer Science & Eng. University at Buffalo Buffalo, New York COMMUNICATION PROTOCOLS.
Protocols and the TCP/IP Suite
Antennas and Propagation
Antennas and Propagation
Antennas and Propagation
Signal Propagation Basics
Antennas and Propagation
CSE 5345 – Fundamentals of Wireless Networks
Protocols and the TCP/IP Suite
ECEN 619 “Internet Protocols and Modeling”
Data and Computer Communications by William Stallings Eighth Edition
CSE 5345 – Fundamentals of Wireless Networks
ECEN “Internet Protocols and Modeling”
CSE 4215/5431: Mobile Communications Winter 2011
Antennas & Propagation
Antennas and Propagation
Protocols and the TCP/IP Suite
Presentation transcript:

Wireless Networks Instructor: Fatima Naseem Lecture # 02 Computer Engineering Department, University of Engineering and Technology, Taxila

Protocols and the TCP/IP Suite Chapter 4

Key Features of a Protocol Syntax Concerns the format of the data blocks Semantics Includes control information for coordination and error handling Timing Includes speed matching and sequencing

Agents Involved in Communication Applications Exchange data between computers (e.g., electronic mail) Computers Connected to networks Networks Transfers data from one computer to another

Principles to Arrive at Layers Layer should be created where different abstraction needed Each layer performs well defined functions Layer boundaries should be chosen to minimize flow across the interfaces No of layers should be Large enough so that distinct functions are not thrown in same layer Small enough to avoid repetition

TCP/IP Layers Physical layer Network access layer Internet layer Host-to-host, or transport layer Application layer

TCP/IP Physical Layer Covers the physical interface between a data transmission device and a transmission medium or network Physical layer specifies: Characteristics of the transmission medium The nature of the signals The data rate Other related matters

TCP/IP Network Access Layer Concerned with the exchange of data between an end system and the network to which it's attached Software used depends on type of network Circuit switching Packet switching (e.g., X.25) LANs (e.g., Ethernet) Others

T:TCP/IP Internet Layer Uses internet protocol (IP) Provides routing functions to allow data to traverse multiple interconnected networks Implemented in end systems and routers

TCP/IP Host-to-Host, or Transport Layer Commonly uses transmission control protocol (tcp) Provides reliability during data exchange Completeness Order

TCP/IP Application Layer Logic supports user applications Uses separate modules that are peculiar to each different type of application

Protocol Data Units (PDUs)

Common TCP/IP Applications Simple mail transfer protocol (SMTP) Provides a basic electronic mail facility File Transfer Protocol (FTP) Allows files to be sent from one system to another TELNET Provides a remote logon capability

Layers of the OSI Model Application Presentation Session Transport Network Data link Physical

OSI Application Layer Provides access to the OSI environment for users Provides distributed information services

OSI Presentation Layer Provides independence to the application processes from differences in data representation (syntax)

OSI Session Layer Provides the control structure for communication between applications Establishes, manages, and terminates connections (sessions) between cooperating applications

OSI Transport Layer Provides reliable, transparent transfer of data between end points Provides end-to-end error recovery and flow control

OSI Network Layer Provides upper layers with independence from the data transmission and switching technologies used to connect systems Responsible for establishing, maintaining, and terminating connections

OSI Data link Layer Provides for the reliable transfer of information across the physical link Sends blocks (frames) with the necessary synchronization, error control, and flow control

OSI Physical Layer Concerned with transmission of unstructured bit stream over physical medium Deals with accessing the physical medium Mechanical characteristics Electrical characteristics Functional characteristics Procedural characteristics

Comparison of OSI and TCP/IP

TCP/IP Architecture Dominance TCP/IP protocols matured quicker than similar OSI protocols When the need for interoperability across networks was recognized, only TCP/IP was available and ready to go OSI model is unnecessarily complex Accomplishes in seven layers what TCP/IP does with fewer layers

Elements of Standardization within OSI Framework Protocol Specification Format of protocol data units (PDUs) exchanged Semantics of all fields Allowable sequence of PDUs Service Definition Functional description that defines what services are provided, but not how the services are to be provided Addressing Entities are referenced by means of a service access point (SAP)

Internetworking Terms Communication network – facility that provides a data transfer service among devices attached to the network Internet – collection of communication networks, interconnected by bridges/routers Intranet – internet used by an organization for internal purposes Provides key Internet applications Can exist as an isolated, self-contained internet

Internetworking Terms End System (ES) – device used to support end-user applications or services Intermediate System (IS) – device used to connect two networks Bridge – an IS used to connect two LANs that use similar LAN protocols Router - an IS used to connect two networks that may or may not be similar

Functions of a Router Provide a link between networks Provide for the routing and delivery of data between processes on end systems attached to different networks Provide these functions in such a way as not to require modifications of the networking architecture of any of the attached subnetworks

Network Differences Routers Must Accommodate Addressing schemes Different schemes for assigning addresses Maximum packet sizes Different maximum packet sizes requires segmentation Interfaces Differing hardware and software interfaces Reliability Network may provide unreliable service

Antennas and Propagation Chapter 5

Introduction An antenna is an electrical conductor or system of conductors Transmission - radiates electromagnetic energy into space Reception - collects electromagnetic energy from space In two-way communication, the same antenna can be used for transmission and reception

Radiation Patterns Radiation pattern An antenna radiates in all directions but does not perform well in all directions One way of performance characterization is radiation pattern Graphical representation of radiation properties of an antenna Depicted as two-dimensional cross section The distance from the antenna to each point on the radiation pattern is proportional to the power radiated in that direction

Radiation Patterns Beam width (or half-power beam width) Measure of directivity of antenna Reception pattern Receiving antenna’s equivalent to radiation pattern

Types of Antennas Isotropic antenna (idealized) Dipole antennas Radiates power equally in all directions Dipole antennas Half-wave dipole antenna (or Hertz antenna) Quarter-wave vertical antenna (or Marconi antenna) Parabolic Reflective Antenna

Antenna Gain Antenna gain Effective area Power output, in a particular direction, compared to that produced in any direction by a perfect omnidirectional antenna (isotropic antenna) Effective area Related to physical size and shape of antenna

Antenna Gain Relationship between antenna gain and effective area G = antenna gain Ae = effective area f = carrier frequency c = speed of light (» 3 ´ 108 m/s)  = carrier wavelength

Propagation Modes Ground-wave propagation Sky-wave propagation Line-of-sight propagation

Ground Wave Propagation

Ground Wave Propagation Follows contour of the earth Can Propagate considerable distances Frequencies up to 2 MHz Example AM radio

Sky Wave Propagation

Sky Wave Propagation Signal reflected from ionized layer of atmosphere back down to earth Signal can travel a number of hops, back and forth between ionosphere and earth’s surface Reflection effect caused by refraction Examples Amateur radio CB radio

Line-of-Sight Propagation

Line-of-Sight Propagation Transmitting and receiving antennas must be within line of sight Satellite communication – signal above 30 MHz not reflected by ionosphere Ground communication – antennas within effective line of site due to refraction Refraction – bending of microwaves by the atmosphere Velocity of electromagnetic wave is a function of the density of the medium When wave changes medium, speed changes Wave bends at the boundary between mediums

Line-of-Sight Equations Optical line of sight Effective, or radio, line of sight d = distance between antenna and horizon (km) h = antenna height (m) K = adjustment factor to account for refraction, rule of thumb K = 4/3

Line-of-Sight Equations Maximum distance between two antennas for LOS propagation: h1 = height of antenna one h2 = height of antenna two

LOS Wireless Transmission Impairments Attenuation and attenuation distortion Free space loss Noise Atmospheric absorption Multipath Refraction Thermal noise

Attenuation Strength of signal falls off with distance over transmission medium Attenuation factors for unguided media: Received signal must have sufficient strength so that circuitry in the receiver can interpret the signal Signal must maintain a level sufficiently higher than noise to be received without error Attenuation is greater at higher frequencies, causing distortion

Free Space Loss Free space loss, ideal isotropic antenna Pt = signal power at transmitting antenna Pr = signal power at receiving antenna  = carrier wavelength d = propagation distance between antennas c = speed of light (» 3 ´ 10 8 m/s) where d and  are in the same units (e.g., meters)

Free Space Loss Free space loss equation can be recast:

Free Space Loss Free space loss accounting for gain of other antennas Gt = gain of transmitting antenna Gr = gain of receiving antenna At = effective area of transmitting antenna Ar = effective area of receiving antenna

Free Space Loss Free space loss accounting for gain of other antennas can be recast as

Categories of Noise Thermal Noise Intermodulation noise Crosstalk Impulse Noise

Thermal Noise Thermal noise due to agitation of electrons Present in all electronic devices and transmission media Cannot be eliminated Function of temperature Particularly significant for satellite communication

Thermal Noise Noise is assumed to be independent of frequency Thermal noise present in a bandwidth of B Hertz (in watts): or, in decibel-watts

Noise Terminology Intermodulation noise – occurs if signals with different frequencies share the same medium Interference caused by a signal produced at a frequency that is the sum or difference of original frequencies Crosstalk – unwanted coupling between signal paths Impulse noise – irregular pulses or noise spikes Short duration and of relatively high amplitude Caused by external electromagnetic disturbances, or faults and flaws in the communications system

Expression Eb/N0 Ratio of signal energy per bit to noise power density per Hertz The bit error rate for digital data is a function of Eb/N0 Given a value for Eb/N0 to achieve a desired error rate, parameters of this formula can be selected As bit rate R increases, transmitted signal power must increase to maintain required Eb/N0

Other Impairments Atmospheric absorption – water vapor and oxygen contribute to attenuation Multipath – obstacles reflect signals so that multiple copies with varying delays are received Refraction – bending of radio waves as they propagate through the atmosphere

Multipath Propagation

Multipath Propagation Reflection - occurs when signal encounters a surface that is large relative to the wavelength of the signal Diffraction - occurs at the edge of an impenetrable body that is large compared to wavelength of radio wave Scattering – occurs when incoming signal hits an object whose size in the order of the wavelength of the signal or less

The Effects of Multipath Propagation Multiple copies of a signal may arrive at different phases If phases add destructively, the signal level relative to noise declines, making detection more difficult Intersymbol interference (ISI) One or more delayed copies of a pulse may arrive at the same time as the primary pulse for a subsequent bit

Types of Fading Fast fading Slow fading Flat fading Selective fading Rayleigh fading Rician fading

Error Compensation Mechanisms Forward error correction Adaptive equalization Diversity techniques

Forward Error Correction Transmitter adds error-correcting code to data block Code is a function of the data bits Receiver calculates error-correcting code from incoming data bits If calculated code matches incoming code, no error occurred If error-correcting codes don’t match, receiver attempts to determine bits in error and correct

Adaptive Equalization Can be applied to transmissions that carry analog or digital information Analog voice or video Digital data, digitized voice or video Used to combat intersymbol interference Involves gathering dispersed symbol energy back into its original time interval Techniques Lumped analog circuits Sophisticated digital signal processing algorithms

Diversity Techniques Diversity is based on the fact that individual channels experience independent fading events Space diversity – techniques involving physical transmission path Frequency diversity – techniques where the signal is spread out over a larger frequency bandwidth or carried on multiple frequency carriers Time diversity – techniques aimed at spreading the data out over time