Chapter 2 Science, Systems, Matter, and Energy. MODELS AND BEHAVIOR OF SYSTEMS  Usefulness of models Complex systems are predicted by developing a model.

Slides:



Advertisements
Similar presentations
Chapter 2 Science, Systems, Matter, and Energy Matter High-Q Energy Low-Q Energy.
Advertisements

Science, Systems, Matter, and Energy
Chapter 16 Energy Concepts.
Environmental Systems: Chapter 2-
Science, Systems, Matter, and Energy
Matter and Energy.
Environmental Systems: Chapter 2-
CHEMISTRY NOTES - MATTER
ENERGY Energy is the ability to do work and transfer heat.
Energy in Living systems. Energy I: The facts All organisms transform energy Energy = the capacity to do work Familiar with Kinetic (motion) and Potential.
Science, Systems, Matter, and Energy G. Tyler Miller’s Living in the Environment 12 th Edition Chapter 3 G. Tyler Miller’s Living in the Environment 12.
Science, Systems, Matter, and Energy
Chapter 2 Science, Systems, Matter, and Energy. Core Case Study: Environmental Lesson from Easter Island  Thriving society 15,000 people by ,000.
MATTER AND ENERGY CHAPTER TWO. Concepts Matter consists of elements and compounds, which in turn are made up of atoms, ions, or molecules Whenever matter.
Science, Matter, and Energy Chapter 2. Science Focus: Easter Island  Solving a mystery Population crash – cause and effect  Evolving hypotheses Unsustainable.
Chapter 2 Science, Systems, Matter, and Energy. Chapter Overview Questions  What is science, and what do scientists do?  What are major components and.
 Chapter 2.  Matter – mass + space  Atoms – elements; periodic table; symbols o Atomic number, mass number, isotope o Radioactivity Radioactive decay,
Chapter 2 Science, Systems, Matter, and Energy. Feedback Loops: How Systems Respond to Change  Outputs of matter, energy, or information fed back into.
Science. Matter. Energy. Systems.
Core Case Study: Carrying Out a Controlled Scientific Experiment
Science, Systems, Matter, and Energy Review Session Brian Kaestner Review Session Brian Kaestner.
Science, Systems, Matter, and Energy G. Tyler Miller’s Living in the Environment 13 th Edition Chapter 3 G. Tyler Miller’s Living in the Environment 13.
Science, Matter, Energy, and Systems
Chapter 1 Environmental Problems, Their Causes, and Sustainability.
Science, Matter, and Energy Chapter 2. WHAT DO SCIENTISTS DO?
Science, Systems, Matter, and Energy Chapter 3 APES Ms. Miller Chapter 3 APES Ms. Miller.
Science, Systems, Matter, and Energy G. Tyler Miller’s Living in the Environment 14 th Edition Chapter 3 G. Tyler Miller’s Living in the Environment 14.
LIVING IN THE ENVIRONMENT 17 TH MILLER/SPOOLMAN CHAPTER 2 Science, Matter, Energy, and Systems.
+ Chapter 3 Science, Systems, Matter and Energy. + What is Energy? The capacity to do work and transfer heat Kinetic Energy Matter has because of its.
What Is Science? Science is a pursuit of knowledge about how the world works Scientific data is collected by making observations and taking measurements.
Chapter 2 Science, Systems, Matter, and Energy. Chapter Overview Questions  What is science, and what do scientists do?  What are major components and.
Chapter 2 Science, Systems, Matter, and Energy. Core Case Study: Environmental Lesson from Easter Island Thriving society –15,000 people by Used.
Ch 2 Science, Systems, Matter, and Energy. Case Study Easter Island (Summarize):
Chapter 2 Science, Systems, Matter, and Energy. Chapter Overview Questions  What is science, and what do scientists do?  What are major components and.
CHAPTER 2 Science, Matter, Energy, and Systems
Science, Matter, and Energy Chapter 2. Question of the Day Easter Island and the civilization that once thrived and then largely disappeared is an example.
Chapter 2 Science, Systems, Matter, and Energy. Core Case Study: Environmental Lesson from Easter Island  Thriving society 15,000 people by ,000.
Eighth Grade Review Chemistry. Matter is anything that has mass and occupies space. All matter is made up of small particles called atoms.
Chapter 2 Science, Systems, Matter, and Energy. Video: Easter Island  From ABC News, Environmental Science in the Headlines, 2005 DVD. PLAY VIDEO 1.By.
Chapter 2 Science, Systems, Matter, and Energy. Core Case Study: Environmental Lesson from Easter Island  Thriving society 15,000 people by ,000.
ENTRY QUIZ 1.What elements do you already know? 2.What is similarity? 3.What is major difference? 4.What is metal? 5.What are gases?
Properties of Water How does water’s high specific heat capacity affect the environment? Helps protect living organisms from temperature fluctuations Moderates.
Unit 1 Powerpoint Review for Chapter 2. What Is Science? Science is a pursuit of knowledge about how the world works Scientific data is collected by making.
Science, Matter, and Energy Chapter 2. Key Concepts Science is a process for understanding The universe and environment are composed of matter and run.
QotD: Where does the energy required to run your car come from? How does it run your car? Where does the energy required to run you come from? How does.
Chapter 2 Science, Systems, Matter, and Energy. Chapter Overview Questions  What is science, and what do scientists do?  What are major components and.
Chapter 2 Science, Systems, Matter, and Energy. Chapter Overview Questions  What is science, and what do scientists do?  What are major components and.
Chapter 2 Science, Systems, Matter, and Energy. Video: Easter Island  From ABC News, Environmental Science in the Headlines, 2005 DVD. PLAY VIDEO 1.By.
Science, Systems, Matter, and Energy
Science, Systems, Matter, and Energy
ENVIRONMENTAL SCIENCE
Environmental Systems Chapter 2
Science, Systems, Matter, and Energy
Science, Matter, Energy, and Systems
Science, Systems, Matter, and Energy
Basic Chemistry Review for APES What is MATTER? What is Energy?
Science, Systems, Matter, and Energy
Science, Systems, Matter, and Energy
MATTER AND ENERGY CHAPTER THREE.
Science, Systems, Matter, and Energy
Science, Systems, Matter, and Energy
Science, Systems, Matter, and Energy
Review Information: We will NOT discuss these sections in class!
CHAPTER 2 SCIENCE, MATTER, ENERGY & SYSTEMS.
Science, Systems, Matter, and Energy
Science, Systems, Matter, and Energy
Science, Systems, Matter, and Energy
Science, Systems, Matter, and Energy
Science, Matter, Energy, and Systems
Science, Matter, Energy, and Systems
Presentation transcript:

Chapter 2 Science, Systems, Matter, and Energy

MODELS AND BEHAVIOR OF SYSTEMS  Usefulness of models Complex systems are predicted by developing a model of its inputs, throughputs (flows), and outputs of matter, energy and information. Complex systems are predicted by developing a model of its inputs, throughputs (flows), and outputs of matter, energy and information. Models are simplifications of “real-life”. Models are simplifications of “real-life”. Models can be used to predict if-then scenarios. Models can be used to predict if-then scenarios.

Feedback Loops: How Systems Respond to Change Positive feedback loop causes a system to change further in the same direction (e.g. erosion) Positive feedback loop causes a system to change further in the same direction (e.g. erosion) the ice-albedo positive feedback loop whereby melting snow exposes more dark ground which in turn absorbs heat and causes more snow to melt.the ice-albedo positive feedback loop whereby melting snow exposes more dark ground which in turn absorbs heat and causes more snow to melt. Negative (corrective) feedback loop causes a system to change in the opposite direction Negative (corrective) feedback loop causes a system to change in the opposite direction predator-prey relationships in ecosystems.predator-prey relationships in ecosystems.

Examples  Positive feedback – change continues in one direction one direction

 Negative feedback – before one population grows exponentially a feedback to reverse growth occurs

Time Delays  Corrective action of the negative feedback loop takes too long

TYPES AND STRUCTURE OF MATTER  Elements and Compounds Matter exists in chemical forms as elements and compounds. Matter exists in chemical forms as elements and compounds. Elements (represented on the periodic table) are the distinctive building blocks of matter.Elements (represented on the periodic table) are the distinctive building blocks of matter. Compounds: two or more different elements held together in fixed proportions by chemical bonds.Compounds: two or more different elements held together in fixed proportions by chemical bonds.

Atoms Figure 2-4

Ions  An ion is an atom or group of atoms with one or more net positive or negative electrical charges.  The number of positive or negative charges on an ion is shown as a superscript after the symbol for an atom or group of atoms Hydrogen ions (H + ), Hydroxide ions (OH - ) Hydrogen ions (H + ), Hydroxide ions (OH - ) Sodium ions (Na + ), Chloride ions (Cl - ) Sodium ions (Na + ), Chloride ions (Cl - )

 The pH (potential of Hydrogen) is the concentration of hydrogen ions in one liter of solution. Figure 2-5

Compounds and Chemical Formulas  Chemical formulas are shorthand ways to show the atoms and ions in a chemical compound. Combining Hydrogen ions (H + ) and Hydroxide ions (OH - ) makes the compound H 2 O (dihydrogen monooxide, a.k.a. water). Combining Hydrogen ions (H + ) and Hydroxide ions (OH - ) makes the compound H 2 O (dihydrogen monooxide, a.k.a. water). Combining Sodium ions (Na + ) and Chloride ions (Cl - ) makes the compound NaCl (sodium chloride a.k.a. salt). Combining Sodium ions (Na + ) and Chloride ions (Cl - ) makes the compound NaCl (sodium chloride a.k.a. salt).

Organic Compounds: Carbon Rules  Organic compounds contain carbon atoms combined with one another and with various other atoms such as H +, N +, or Cl -.  Contain at least two carbon atoms combined with each other and with atoms. Methane (CH 4 ) is the only exception. Methane (CH 4 ) is the only exception. All other compounds are inorganic. All other compounds are inorganic.

Organic Compounds: Carbon Rules  Hydrocarbons: compounds of carbon and hydrogen atoms (e.g. methane (CH 4 )).  Chlorinated hydrocarbons: compounds of carbon, hydrogen, and chlorine atoms (e.g. DDT (C 14 H 9 C l5 )).  Simple carbohydrates: certain types of compounds of carbon, hydrogen, and oxygen (e.g. glucose (C 6 H 12 O 6 )).

Cells: The Fundamental Units of Life  Cells are the basic structural and functional units of all forms of life. Prokaryotic cells (bacteria) lack a distinct nucleus. Prokaryotic cells (bacteria) lack a distinct nucleus. Eukaryotic cells (plants and animals) have a distinct nucleus. Eukaryotic cells (plants and animals) have a distinct nucleus. Figure 2-6

Macromolecules, DNA, Genes and Chromosomes  Large, complex organic molecules (macromolecules) make up the basic molecular units found in living organisms. Complex carbohydrates Complex carbohydrates Proteins Proteins Nucleic acids Nucleic acids Lipids Lipids Figure 2-7

States of Matter  The atoms, ions, and molecules that make up matter are found in three physical states: solid, liquid, gaseous. solid, liquid, gaseous.  A fourth state, plasma, is a high energy mixture of positively charged ions and negatively charged electrons. The sun and stars consist mostly of plasma. The sun and stars consist mostly of plasma. Scientists have made artificial plasma (used in TV screens, gas discharge lasers, florescent light). Scientists have made artificial plasma (used in TV screens, gas discharge lasers, florescent light).

Matter Quality  Matter can be classified as having high or low quality depending on how useful it is to us as a resource. High quality matter is concentrated and easily extracted. High quality matter is concentrated and easily extracted. low quality matter is more widely dispersed and more difficult to extract. low quality matter is more widely dispersed and more difficult to extract. Figure 2-8

CHANGES IN MATTER  Matter can change from one physical form to another or change its chemical composition. When a physical or chemical change occurs, no atoms are created or destroyed. When a physical or chemical change occurs, no atoms are created or destroyed. Law of conservation of matter.Law of conservation of matter. Physical change maintains original chemical composition. Physical change maintains original chemical composition. Chemical change involves a chemical reaction which changes the arrangement of the elements or compounds involved. Chemical change involves a chemical reaction which changes the arrangement of the elements or compounds involved. Chemical equations are used to represent the reaction.Chemical equations are used to represent the reaction.

Chemical Change  Energy is given off during the reaction as a product.

p. 39 Reactant(s)Product(s) carbon +oxygen carbon dioxide + energy C +O2O2 CO 2 energy + + black solidcolorless gas +

Types of Pollutants  Factors that determine the severity of a pollutant’s effects: chemical nature, concentration, and persistence.  Pollutants are classified based on their persistence: Degradable pollutants Degradable pollutants Biodegradable pollutants Biodegradable pollutants Slowly degradable pollutants Slowly degradable pollutants Nondegradable pollutants Nondegradable pollutants

ENERGY  Energy is the ability to do work and transfer heat. Kinetic energy – energy in motion Kinetic energy – energy in motion heat, electromagnetic radiationheat, electromagnetic radiation Potential energy – stored for possible use Potential energy – stored for possible use batteries, glucose moleculesbatteries, glucose molecules

Electromagnetic Spectrum  Many different forms of electromagnetic radiation exist, each having a different wavelength and energy content. Figure 2-11

Electromagnetic Spectrum  Organisms vary in their ability to sense different parts of the spectrum. Figure 2-12

Fig. 2-13, p. 44 Low-temperature heat (100°C or less) for space heating Moderate-temperature heat (100–1,000°C) for industrial processes, cooking, producing steam, electricity, and hot water Very high-temperature heat (greater than 2,500°C) for industrial processes and producing electricity to run electrical devices (lights, motors) Mechanical motion to move vehicles and other things) High-temperature heat (1,000–2,500°C) for industrial processes and producing electricity Dispersed geothermal energy Low-temperature heat (100°C or lower) Normal sunlight Moderate-velocity wind High-velocity water flow Concentrated geothermal energy Moderate-temperature heat (100–1,000°C) Wood and crop wastes High-temperature heat (1,000–2,500°C) Hydrogen gas Natural gas Gasoline Coal Food Electricity Very high temperature heat (greater than 2,500°C) Nuclear fission (uranium) Nuclear fusion (deuterium) Concentrated sunlight High-velocity wind Source of Energy Relative Energy Quality (usefulness) Energy Tasks

Laws of Thermodynamics First Law: energy cannot be created or destroyed, but it can be transformed from one form to another Sunlight  chemical energy food(photosynthesis)

Second Law: when energy is transformed, it is degraded to lower quality Gasoline combustion in car  mechanical energy + heat