دانشگاه صنعتي اميركبير

Slides:



Advertisements
Similar presentations
PID Controllers and PID tuning
Advertisements

Ch 7.6: Complex Eigenvalues
Neural Simulation and Control.. Simulation Input/Output models Proces u(k) y(k+d) d(k) The NARMA model:
دانشگاه صنعتي اميركبير دانشكده مهندسي پزشكي Constraints in MPC کنترل پيش بين-دکتر توحيدخواه.
Nyquist Stability Criterion
Properties of State Variables
280 SYSTEM IDENTIFICATION The System Identification Problem is to estimate a model of a system based on input-output data. Basic Configuration continuous.
Function Optimization Newton’s Method. Conjugate Gradients
Control System Design Based on Frequency Response Analysis
Enhanced Single-Loop Control Strategies
Chapter Summer 2. Comparator 3. Block Blocks in Series
Development of Empirical Models From Process Data
Dynamic Behavior and Stability of Closed-Loop Control Systems
12 1 Variations on Backpropagation Variations Heuristic Modifications –Momentum –Variable Learning Rate Standard Numerical Optimization –Conjugate.
Math for CSLecture 51 Function Optimization. Math for CSLecture 52 There are three main reasons why most problems in robotics, vision, and arguably every.
Overall Objectives of Model Predictive Control

Christopher Dougherty EC220 - Introduction to econometrics (chapter 4) Slideshow: nonlinear regression Original citation: Dougherty, C. (2012) EC220 -
Lecture 7: PID Tuning.
Adaptive Signal Processing
Normalised Least Mean-Square Adaptive Filtering
Out response, Poles, and Zeros
MODEL REFERENCE ADAPTIVE CONTROL
Linear Equations in Linear Algebra
Dynamic analysis of switching converters
University of Virginia Proportional Control Spring 2015 Jack Stankovic University of Virginia.
880.P20 Winter 2006 Richard Kass 1 Confidence Intervals and Upper Limits Confidence intervals (CI) are related to confidence limits (CL). To calculate.
Non-Linear Models. Non-Linear Growth models many models cannot be transformed into a linear model The Mechanistic Growth Model Equation: or (ignoring.
DYNAMIC BEHAVIOR AND STABILITY OF CLOSED-LOOP CONTROL SYSTEMS
1 1.5 © 2016 Pearson Education, Inc. Linear Equations in Linear Algebra SOLUTION SETS OF LINEAR SYSTEMS.
دانشگاه صنعتي اميركبير دانشكده مهندسي پزشكي State-space Models with Embedded Integrator استاد درس دكتر فرزاد توحيدخواه آبان 1388 کنترل پيش بين-دکتر توحيدخواه.
Ming-Feng Yeh1 CHAPTER 16 AdaptiveResonanceTheory.
دانشگاه صنعتي اميركبير دانشكده مهندسي پزشكي استاد درس دكتر فرزاد توحيدخواه بهمن 1389 کنترل پيش بين-دکتر توحيدخواه MPC Stability-1.
Chapter 11 1 Stability of Closed-Loop Control Systems Example 11.4 Consider the feedback control system shown in Fig with the following transfer.
1 Chapter 11 Compensator Design When the full state is not available for feedback, we utilize an observer. The observer design process is described and.
Chapter 20 1 Overall Objectives of Model Predictive Control 1.Prevent violations of input and output constraints. 2.Drive some output variables to their.
دانشگاه صنعتي اميركبير دانشكده مهندسي پزشكي Constraints in MPC-2 کنترل پيش بين-دکتر توحيدخواه.
دانشگاه صنعتي اميركبير دانشكده مهندسي پزشكي State-space Models with Embedded Integrator Ref : Model Predictive Control System Design and Implementation.
Variations on Backpropagation.
Z Transform The z-transform of a digital signal x[n] is defined as:
Time Domain Representation of Linear Time Invariant (LTI).
Discrete Controller Design
Chapter 2-OPTIMIZATION G.Anuradha. Contents Derivative-based Optimization –Descent Methods –The Method of Steepest Descent –Classical Newton’s Method.
METHOD OF STEEPEST DESCENT ELE Adaptive Signal Processing1 Week 5.
Chapter 20 Model Predictive Control
1 NONLINEAR REGRESSION Suppose you believe that a variable Y depends on a variable X according to the relationship shown and you wish to obtain estimates.
1 Chapter 20 Model Predictive Control Model Predictive Control (MPC) – regulatory controls that use an explicit dynamic model of the response of process.
دانشگاه صنعتي اميركبير دانشكده مهندسي پزشكي استاد درس دكتر فرزاد توحيدخواه بهمن 1389 کنترل پيش بين-دکتر توحيدخواه MPC Stability-2.
دانشگاه صنعتي اميركبير دانشكده مهندسي پزشكي Constraints in MPC-2 کنترل پیش بین- دکتر توحیدخواه.
(COEN507) LECTURE III SLIDES By M. Abdullahi
Tip Position Control Using an Accelerometer & Machine Vision Aimee Beargie March 27, 2002.
Discrete-time Controller Design (Deadbeat & Dahlin Controllers)
Lecture 3: Common Dynamic Systems 1. Identify common dynamic elements:  First order  Integrating (Non self-regulatory)  Second order  Dead time Predict.
Ch 9.6: Liapunov’s Second Method In Section 9.3 we showed how the stability of a critical point of an almost linear system can usually be determined from.
Exercise 1 Suppose we have a simple mass, spring, and damper problem. Find The modeling equation of this system (F input, x output). The transfer function.
Presentation at NI Day April 2010 Lillestrøm, Norway
Chapter 10 Optimal Control Homework 10 Consider again the control system as given before, described by Assuming the linear control law Determine the constants.
Overall Objectives of Model Predictive Control
دانشگاه صنعتي اميركبير دانشكده مهندسي پزشكي استاد درس دكتر فرزاد توحيدخواه بهمن 1389 MPC Stability-1 کنترل پيش بين-دکتر توحيدخواه 3.
Autonomous Cyber-Physical Systems: Dynamical Systems
CS5321 Numerical Optimization
Where did we stop? The Bayes decision rule guarantees an optimal classification… … But it requires the knowledge of P(ci|x) (or p(x|ci) and P(ci)) We.
METHOD OF STEEPEST DESCENT
Adaptive Resonance Theory
Homework 9 Refer to the last example.
دانشگاه صنعتي اميركبير
دانشگاه صنعتي اميركبير
دانشگاه صنعتي اميركبير
دانشگاه صنعتي اميركبير
Adaptive Resonance Theory
Presentation transcript:

دانشگاه صنعتي اميركبير دانشكده مهندسي پزشكي استاد درس دكتر فرزاد توحيدخواه بهمن 1389 MPC Stability-3 کنترل پيش بين-دکتر توحيدخواه 2

Exponentially Weighted Constrained Control کنترل پيش بين-دکتر توحيدخواه

Recall کنترل پيش بين-دکتر توحيدخواه

weighted variables in the solution of the optimization problem. As the constraints are specified in terms of the original physical variables, the constraints need to be transformed to correspond with the exponentially weighted variables in the solution of the optimization problem. If the constraints are only imposed at the initial sample of the variables within the window, then the constraints will be used unchanged. کنترل پيش بين-دکتر توحيدخواه

Transformed constraints for future Δu: Because the constraints on the state variables are imposed one step ahead, the exponential factor needs to be included Transformed constraints for future Δu: کنترل پيش بين-دکتر توحيدخواه

The constraints on the state variable are: φ(j) is the data vector used in the design of predictive control. کنترل پيش بين-دکتر توحيدخواه

Constraints on the control variable, The originally uniformly imposed constant constraints are all transformed into constraints that are functions of the exponential weight factor α−j . The bounds converge to some constants as the future sample index increases کنترل پيش بين-دکتر توحيدخواه

Example 4.9. Suppose that a second-order system with time delay is described by Design and simulate a predictive control system with unit step input and zero initial conditions. illustrate the closed-loop performance and numerical condition of the Hessian matrix for α = 1, 1.1, 1.2 کنترل پيش بين-دکتر توحيدخواه

We impose the constraints for the first 10 samples. Solution We impose the constraints for the first 10 samples. کنترل پيش بين-دکتر توحيدخواه

Predictive control with constraints Predictive control with constraints. Key: line (1) without constraints; line (2) constraints on the first sample (α = 1.2); line (3) constraints on the first 10 samples (α = 1.2); line (4) constraints on the first 10 samples (α = 1.1). The plots for case 2, 3, 4 are identical کنترل پيش بين-دکتر توحيدخواه

When transforming the constraints to the forms that embed the exponential weight α, the constrained control system is consistent with respect to the weight factor α. کنترل پيش بين-دکتر توحيدخواه

Additional Benefit کنترل پيش بين-دکتر توحيدخواه

Example 4.10. A mechanical system that is highly oscillatory and non-minimum-phase, Poles: Design and simulate predictive control systems with and without exponential data weighting (α = 1.2 and α = 1); and compare the results. کنترل پيش بين-دکتر توحيدخواه

Open-loop response of mechanical system کنترل پيش بين-دکتر توحيدخواه

Initial state variable condition Solution. The LQR control system Initial state variable condition کنترل پيش بين-دکتر توحيدخواه

LQR control of mechanical system کنترل پيش بين-دکتر توحيدخواه

Because the system is highly oscillatory, it takes about 460 samples for the LQR control trajectory to decay to zero it takes about 20 samples for the system output to decay to zero. کنترل پيش بين-دکتر توحيدخواه

Predictive control without exponential weighting (α = 1) In order for the MPC to match the LQR system, the prediction horizon needs to be selected as 460 or above. As for the parameters in the Laguerre function, if a = 0, then N needs to be 400 or above to achieve the LQR desired results. If a larger a is used, then the parameter N is smaller. Indeed, with the selection of a = 0.9 and N = 60, and predictive control system matches the results obtained from LQR within one optimization window. In contrast, if a = 0 and N = 199 are selected, then the predictive control signals will match the LQR control up to the sampling instant of 199. کنترل پيش بين-دکتر توحيدخواه

Comparison study: LQR vs predictive control Comparison study: LQR vs predictive control. Key: line (1) LQR; line (2) predictive control a = 0.9 and N = 60; line (3) predictive control a = 0 and N = 199. کنترل پيش بين-دکتر توحيدخواه

Control increment u continues to oscillate about 500 samples, not shown in Figure. The Hessian matrix is ill-conditioned with either a = 0.9 or a = 0. When a = 0.9, the condition number is 4.6595 × 105, while the condition number is 1.7418 × 104 for the case a = 0. Why the MPC with Laguerre functions (a = 0.9) has the larger condition number? This is because the Laguerre functions with a = 0.9 did not decay to zero after 199 samples and the convolution sum φ(m) continued until m reached Np = 480. In comparison, when a = 0, the incremental control is zero after 199 samples. کنترل پيش بين-دکتر توحيدخواه

Predictive control with exponential weighting (α = 1.2) are transformed into: کنترل پيش بين-دکتر توحيدخواه

Comparison results: LQR vs predictive control Comparison results: LQR vs predictive control. Key: line (1) LQR; line (2) predictive control a = 0.4 and N = 10 (α = 1.2). کنترل پيش بين-دکتر توحيدخواه

It is seen that the slow oscillation from the original Δu trajectory has disappeared. In addition, the prediction horizon is much less than 480, instead, 46 is selected. Thus, with Np = 46, N = 10 and a = 0.4, the predictive control system matches the LQR system. The condition number of the Hessian is 59.2435, which is contrasted with the condition number 4.6595× 105 when α = 1 (no exponential weighting) and a = 0.9. Also, the feedback gain matrix is: کنترل پيش بين-دکتر توحيدخواه

Constrained control (α = 1.2) It is seen that the constraint on 0.1 ≤ u was not met at the same time when the constraint on Δu(k) became activated. When both of them are activated, they become conflict constraints. Nevertheless, Hildreth’s quadratic programming method found a compromise solution where the constraint on u was relaxed. کنترل پيش بين-دکتر توحيدخواه

Predictive control with constraints Predictive control with constraints. Key: line (1) without constraints; line (2) constraints on the first sample (α = 1.2) کنترل پيش بين-دکتر توحيدخواه

کنترل پيش بين-دکتر توحيدخواه

کنترل پيش بين-دکتر توحيدخواه

کنترل پيش بين-دکتر توحيدخواه

کنترل پيش بين-دکتر توحيدخواه

کنترل پيش بين-دکتر توحيدخواه

کنترل پيش بين-دکتر توحيدخواه

کنترل پيش بين-دکتر توحيدخواه

کنترل پيش بين-دکتر توحيدخواه

کنترل پيش بين-دکتر توحيدخواه