Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Rotations and quantized vortices in Bose superfluids
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
1 Bose-Einstein Condensation PHYS 4315 R. S. Rubins, Fall 2009.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
System and definitions In harmonic trap (ideal): er.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
Critical stability of a dipolar Bose-Einstein condensate: Bright and vortex solitons Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Anatoli Polkovnikov Krishnendu Sengupta Subir Sachdev Steve Girvin Dynamics of Mott insulators in strong potential gradients Transparencies online at
All-optical production of chromium BECs Bessel Engineering of Chromium Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Experimental study of Efimov scenario in ultracold bosonic lithium
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture III Trapped gases in the classical regime Bilbao 2004.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Stability and collapse of a trapped degenerate dipolar Bose or Fermi gas Sadhan K. Adhikari IFT - Instituto de Física Teórica UNESP - Universidade Estadual.
Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Dipolar chromium BECs, and magnetism
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Magnetization dynamics in dipolar chromium BECs
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Laboratoire de Physique des Lasers
Chromium Dipoles in Optical Lattices
Presentation transcript:

Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students and post-docs: Q. Beaufils, T. Zanon, R. Chicireanu, A. Pouderous Former members of the group: J. C. Keller, R. Barbé B. Pasquiou O. Gorceix P. Pedri B. Laburthe-Tolra L. Vernac E. Maréchal G. Bismut A. Crubellier (LAC- Orsay)

BEC: a quantum (super-)fluid Macroscopic occupation of ground state Van-der-Waals 1/r 6 interactions, short range, isotropic Quasi-particles, phonons Landau criterium for superfluidity Rev. Mod. Phys. 77, 187 (2005)

Types, and control, of interactions Van-der Waals, short range and isotropic. Pure s-wave collisions at low temperature. Effective potential a S  (R), with a S scattering lenght, tunable thanks to Feshbach resonances Dipole-dipole interactions (magnetic atoms, Cr, Er, Dy, dipolar molecules, Rydberg atoms) Tunable through NMR techniques (PRL 89, (2002)). Quantum phase transitions Ferromagnetic / Polar/ Cyclic phases Quantum magnetism Nematic phases in liquid cristals Multicomponent BECs: more than one scattering length. Exchange interactions decide which spin configuration reaches the lowest energy state.

Dipole-dipole interactions Non local anisotropic meanfield Chromium: S=3 -Static and dynamic properties of BECs Anisotropic Long range Alkalis: Van-der-Waals interactions (effective  potential) Chromium: Van-der-Waals plus dipole-dipole Spin degree of freedom coupled to orbital degree of freedom - Spinor physics and magnetization dynamics

Introduction One hydrodynamic dipolar effect Magnetization dynamics near a quantum phase transition Experimental setup Control of dipolar relaxation

N = T=120 μK How to make a Chromium BEC 425 nm 427 nm 650 nm 7S37S3 5 S,D 7P37P3 7P47P4  An atom: 52 Cr (1) (2) Z  An oven  A small MOT  A dipole trap  A crossed dipole trap  All optical evaporation  A BEC Oven at 1350 °C  A Zeeman slower

Hot oven Good vacuum Many lasers 1 M€, 4 years

PRA 77, (R) (2008) PRA 77, (2008)PRA 73, (2006) BEC with Cr atoms in an optical trap

Introduction: BEC, dimensions, interactions One hydrodynamic dipolar effect Magnetization dynamics near a quantum phase transition Experimental setup Control of dipolar relaxation

Free expansion of a BEC A lie: Imaging BEC after time-of-fligth is a measure of in-situ momentum distribution Cs BEC with tunable interactions Self-similar, Castin-Dum expansion TF radii after t.o.f. related to interactions

Pfau,PRL 95, (2005) Modification of BEC expansion due to dipole-dipole interactions TF profile Eberlein, PRL 92, (2004) Striction of BEC (non local effect) (similar results in our group) V dd : finite size effect !

Collective excitations of a dipolar BEC Collective excitations frequency independent of number of atoms and intetaction strength: Pure geometrical factor At lowest energies, wavelength of excitation is 1/(the size of the BEC)

Castin-Dum and frequency of collective excitations Consider small oscillations, then with In the Thomas Fermi regime, collective excitations frequencies solely depend on trapping frequencies

Collective excitations of a dipolar BEC Repeat the experiment for two directions of the magnetic field (differential measurement) Parametric excitations: Phys. Rev. Lett. 105, (2010) A small, but qualitative, difference (geometry is not all) Due to the anisotropy of dipole-dipole interactions, the dipolar mean-field depends on the relative orientation of the magnetic field and the axis of the trap

When dipolar mean field beats local contact meanfield implosion of (spherical) condensates Stuttgart: d-wave collapse Pfau, PRL 101, (2008) Anisotropic explosion pattern reveals dipolar coupling. (Breakdown of self similarity) And…, Tc, solitons, vortices, Mott physics, 1D or 2D physics, breakdown of integrability in 1D… With… ? Cr ? Er ? Dy ? Dipolar molecules ? (Tune contact interactions using Feshbach resonances Nature. 448, 672 (2007) ) >

Introduction: BEC, dimensions, interactions One hydrodynamic dipolar effect Magnetization dynamics near a quantum phase transition Experimental setup Control of dipolar relaxation

Need of an extremely good control of B close to 0 Rotate the BEC ? Spontaneous creation of vortices ? Einstein-de-Haas effect Ueda, PRL 96, (2006) See also Santos, PRL 96, (2006) Angular momentum conservation Dipolar relaxation : PRA 81, (2010) (B~0.1 mG)

Go to very tightly confined geometries (BEC in 2D optical lattices) How to observe the Einstein-de Haas effect ? Energy to nucleate a « mini-vortex » in a lattice site An idea to ease the magnetic field control requirements Create a gap in the system: B now needs to be controlled around a finite non-zero value (~120 kHz) A gain of two orders of magnitude on the magnetic field requirements ! Optical lattices: periodic potential made by AC-stark shift of a standing wave

Reduction of dipolar relaxation in optical lattices Load the BEC in a 1D or 2D Lattice Produce BEC m=-3 detect m=-3 Rf sweep 1Rf sweep 2 BEC m=+3, vary time Load optical lattice One expects a reduction of dipolar relaxation, as a result of the reduction of the density of states in the lattice Dipolar relaxation in 1D lattice: PRA 81, (2010)

What we measure in 1D: Non equilibrium velocity ditribution along tubes Integrability Population in different bands due to dipolar relaxation m=3 m= arXiv: arXiv:

What we measure in 1D: (almost) complete suppression of dipolar relaxation in 1D at low field in 2D lattices. arXiv: arXiv:

(almost) complete suppression of dipolar relaxation in 1D at low field in 2D lattices: a consequence of angular momentum conservation Above threshold : should produce vortices in each lattice site (EdH effect) (problem of tunneling) Towards coherent excitation of pairs into higher lattice orbitals ? Below threshold: a (spin-excited) metastable 1D quantum gas ; Interest for spinor physics, spin excitations in 1D…

Dipolar relaxation in a Cr BEC Fit of decay gives  Produce BEC m=-3 detect BEC m=-3 Rf sweep 1Rf sweep 2 BEC m=+3, vary time See also Shlyapnikov PRL 73, 3247 (1994) Never observed up to now Remains a BEC for ~30 ms Born approximation Pfau, Appl. Phys. B, 77, 765 (2003) PRA 81, (2010)

In Out Interpretation Zero coupling Determination of scattering lengths S=6 and S=4 Interpartice distance Energy

New estimates of Cr scattering lengths Collaboration Anne Crubellier (LAC, IFRAF) PRA 81, (2010) PRA 79, (2009)

Perspectives : go to very low fields what happens when R c >n (-1/3) ? Many-body spinor physics… with changing magnetization… Dipolar relaxation: a local phenomenon

Introduction: BEC, dimensions, interactions One hydrodynamic dipolar effect Magnetization dynamics near a quantum phase transition Experimental setup Control of dipolar relaxation

S=3 Spinor physics Ueda, PRL 96, (2006) Similar theoretical results by Santos and Pfau, PRL 96, (2006) Zeeman states; all trapped four scattering lengths, a 6, a 4, a 2, a 0 (at B c, it costs no energ y to go from m=-3 to m=-2) Phases set by contact interactions (a 6, a 4, a 2, a 0 ) – differ by total magnetization (role of dipolar interactions !)

At VERY low magnetic fields, spontaneous depolarization of 3D and 1D quantum gases Produce BEC m=-3 vary time Rapidly lower magnetic field Stern Gerlach experiments Many difficulties related to extremely low energy scales Magnetic field control below.5 mG (dynamic lock) Technical noise ? Time (ms) Population mSmS

Mean-field effect BECLattice Critical field0.26 mG1.25 mG 1/e fitted0.4 mG1.15 mG Field for depolarization depends on density

Dynamics analysis Time (ms) Remaining atoms in m=-3 Depolarization at higher field for BEC in lattice… but depolarization is slower, presumably due to swelling of the cloud loaded in lattice (depolarization timescale set by the strength of dipole-dipole interactions (magnetic) meanfield) Meanfield picture : Spin(or) precession (Majorana flips) When mean field beats magnetic field Ueda, PRL 96, (2006)

A quench through a quantum phase transition ? Santos and Pfau PRL 96, (2006) Diener and Ho PRL. 96, (2006) Phases set by contact interactions, magnetization dynamics set by dipole-dipole interactions « quantum magnetism » In 1D for attractive interactions: Condensate of bosons pairs Chandrasekhar limit (Shlyapnikov, Tsvelic) We do not (cannot ?) reach those new ground state phases !!

Thermal effect: (Partial) Loss of BEC when demagnetization Spin degree of freedom is released ; lower T c Time (ms) Condensation fraction Time (ms) Population mSmS As gas depolarises, temperature is constant, but condensate fraction goes down !

Thermal effect: (Partial) Loss of BEC when demagnetization Spin degree of freedom is released ; lower T c temperature Condensate fraction PRA, 59, 1528 (1999) J. Phys. Soc. Jpn, 69, 12, 3864 (2000) Normal « B phase » A BEC in each component « A phase » A BEC in majority component magnetization temperature

Conclusion Collective excitations – good agreement with theory Dipolar relaxation in reduced dimensions - towards Einstein-de-Haas Spontaneous demagnetization in a quantum gas – first steps towards spinor ground state (d-wave Feshbach resonance) (BECs in strong rf fields) (rf-assisted relaxation) (rf association) (MOT of 53 Cr) Production of a (slightly) dipolar Fermi sea Load into optical lattices – superfluidity ? Perspectives

Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) Invited professors: W. de Souza Melo (Brasil), D. Ciampini (Italy), T. Porto (USA) Internships (since 2008): M. Trebitsch, M. Champion, J. P. Alvarez, M. Pigeard, E. Andrieux, M. Bussonier, F. Hartmann, R. Jeanneret, B. Bourget G. Bismut (PhD), B. Pasquiou (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri (Theory), O. Gorceix (Group leader)

Single component Bose thermodynamics

Multi-component Bose thermodynamics PRA, 59, 1528 (1999) J. Phys. Soc. Jpn, 69, 12, 3864 (2000) Zeeman states; all trapped magnetization temperature

Double phase transition at constant magnetization No demagnetization at low temperature temperature Condensate fraction Magnetic field Temperature Magnetization Non interacting spinor magnetization temperature