COMET Target Design (COherent Muon to Electron Transition) Satoshi MIHARA.

Slides:



Advertisements
Similar presentations
Matt Rooney RAL The T2K Beam Window Matt Rooney Rutherford Appleton Laboratory BENE November 2006.
Advertisements

EUROnu Beam Window Studies Stress and Cooling Analysis Matt Rooney, Tristan Davenne, Chris Densham Strasbourg June 2010.
The Current T2K Beam Window Design and Upgrade Potential Oxford-Princeton Targetry Workshop Princeton, Nov 2008 Matt Rooney.
Mike Fitton Engineering Analysis Group Design and Computational Fluid Dynamic analysis of the T2K Target Neutrino Beams and Instrumentation 6th September.
Chris Densham RAL High Power Targets Group To be a ‘one-stop shop’ (P. Hurh) for target technology Enable optimum physics performance via sound engineering.
R.Valbuena NBI March 2002 CNGS Decay Pipe Entrance Window Structural and Thermal Analysis A.Benechet, P.Cupial, R.Valbuena CERN-EST-ME.
Studies of solid high-power targets Goran Skoro University of Sheffield HPT Meeting May 01 – 02, 2008 Oxford, UK.
Modelling shock in solid targets Goran Skoro (UKNF Collaboration, University of Sheffield) NuFact 06 UC Irvine, August 24-30, 2006.
前々回わかったこと(確認したこと) 4 次の Matrix を使ったら収束の振る舞いが良くなった。ただし、もしかし たら初期値が良いせいかもしれない ,  のアクセプタンスに入っていない部分で収束が悪くなっている。 tuning 後の Matrix で 12LB のピークを再現してみると幅は太い(
Target & Capture for PRISM Koji Yoshimura On behalf of PRISM Target Group Institute of Particle and Nuclear Science High Energy Accelerator Research Organization.
Status of T2K Target 2 nd Oxford-Princeton High-Power Target Workshop 6-7 th November 2008 Mike Fitton RAL.
T2K Target & Secondary Beamline - progress towards a neutrino Superbeam? Chris Densham.
Beam tracking & low energy fragment 歳藤利行 P152Video
Target & Horns Fluxes were distributed. W/ J-PARC type 2.5 o, 2 o, 3 o. Target cooling evaluation and test Target stress analysis Serious stress analysis.
The JPARC Neutrino Target
TED Thermomechanical Analyses Esposito Raffaele EN-STI-TCD.
1 ATF Linac status and future plan E=1.28GeV Ne=2x10 10 e-/bunch Bunch#/shot 1 ~ 20 bunches(2.8ns spacing) Bunch#/shot 1 ~ 10 bunches(5.6ns spacing) Rep.
Packed Bed Target for Euronu DAVENNE, Tristan (RAL) ; LOVERIDGE, Peter (RAL) ; CARETTA, Ottone (RAL) ; DENSHAM, Chris (RAL) ; ZITO, Marco (CEA Saclay)
A. Kurup, I. Puri, Y. Uchida, Y. Yap, Imperial College London, UK R. B. Appleby, S. Tygier, The University of Manchester and the Cockcroft Institute, UK.
A. Kurup, I. Puri, Y. Uchida, Y. Yap, Imperial College London, UK R. B. Appleby, S. Tygier, The University of Manchester and the Cockcroft Institute, UK.
A powder jet target for a Neutrino Factory Ottone Caretta, Chris Densham (RAL), Tom Davies (Exeter University), Richard Woods (Gericke Ltd)
Proton Accelerators for Science and Innovation Workshop at Fermilab
Study of a new high power spallation target concept
Thermal stress & cooling of J-Parc neutrino target S. Ueda JHF target monitor R&D group Introduction neutrino target requirement for target Thermal stress.
Completion of Water-Cooled Backup Study Eric Pitcher TAC-10 November 5, 2014.
PRISM and Neutrino Factory in Japan Y. Kuno KEK, IPNS January 19th, 2000 at CERN.
WIRE: many pulses effects Goran Skoro (University of Sheffield) Target Meeting 6 April 2006.
T2K Secondary Beamline – Status of RAL Contributions Chris Densham, Mike Fitton, Vishal Francis, Matt Rooney, Mike Woodward, Martin Baldwin, Dave Wark.
Summary Why consider a packed bed as a high power target?
Mu2e Experiment and Issues Rick Coleman, Fermilab RESMM’12, February 2012.
Target mainly by T. Nakadaira, Y. Hayato, A.K.Ichikawa Here, I will report about the present status on target R&D.
Update of the DeeMe spectrometer design and its performance Nguyen Duy Thong, Masaharu Aoki, Doug Bryman C, Satoshi Mihara A, Yohei Nakatsugawa A, Hiroaki.
Horn –current design  H 0.46  H 0.48  H Weight : ????
Heat flow measurement in shallow seas through long-term temperature monitoring Hamamoto Hideki (Earthquake Research Institute,Univ. of Tokyo) Yamano Makoto.
Conceptual Design of COMET and Radiation Hardness Makoto YOSHIDA (KEK) RESMM12 FNAL Feb. 13th, 2012.
Beam line Experiment area SC magnet Pion production target
Investigation of a “Pencil Shaped” Solid Target Peter Loveridge, Mike Fitton, Ottone Caretta High Power Targets Group Rutherford Appleton Laboratory, UK.
21 Sep 2006 Kentaro MIKI for the PHENIX collaboration University of Tsukuba The Physical Society of Japan 62th Annual Meeting RHIC-PHENIX 実験における高横運動量領域での.
Μ→e search using pulsed muon beam μ -  e - νν nuclear muon capture Muon Decay In Orbit  π - +(A,Z)→(A,Z-1)*, (A,Z-1)* →γ+(A,Z-1), γ→e + e - Prompt.
G-2, EDM, COMET muon particle physics programmes at J-PARC Mu_01 Satoshi MIHARA IPNS, KEK FKPPL-FJPPL workshop, Yonesei Univ.
1 Injection tuning of ATF Design acceptance of the ATF-DR Emittance(x,y)3x10 -3 m Timing +/-350ps dE/E+/-1.5% To supply stable beams to ATF2, the injector.
Superbeam target work at RAL Work by: Ottone Caretta, Tristan Davenne, Peter Loveridge, Chris Densham, Mike Fitton, Matt Rooney (RAL) EURONu collaborators:
BENE/CARE Frascati November 2006 CJ Densham CCLRC Rutherford Appleton Laboratory Solid target studies in UK for T2K and for a neutrino factory JRJ.
COMET and DeeMe. Mu-e conversion search at J-PARC COMET Target sensitivity 10 C.L. using aluminum target – SINDRUM II 7x – MEG 2.4x
COMET. μ-e conversion search from muonic aluminium J-PARC pulsed proton beam to produce pulsed muon beam Forbidden in the Standard Model  clue to the.
SPL-SB and NF Beam Window Studies Stress Analysis Matt Rooney, Tristan Davenne, Chris Densham March 2010.
1 Observation Of High-Energy Neutrino Reaction And The Existence Of Two Kinds Of Neutrinos 高エネルギーニュートリノの観測と二種類のニュートリノの存在 G. T. Danby et al. Phys. Rev.
J-PARC neutrino experiment Target Specification Graphite or Carbon-Carbon composite cylindrical bar : length 900mm, diameter 25~30mm The bar may be divided.
Physics with the COMET Staging Plan Satoshi MIHARA IPNS, KEK.
COMET μ-e conversion search at J-PARC. μ-e conversion physics SUSY-GUT, SUSY-seesaw (Gauge Mediated process) – BR = = BR(μ→eγ) × O(α) – τ→lγ SUSY-seesaw.
F.Staufenbiel / EuCARD 2 / Heat load and stress studies of the ILC collimator G. Moortgat-Pick 1;2 S. Riemann 2, F. Staufenbiel 2, A. Ushakov.
Status of UK contribution to LBNF beam and target system Chris Densham, Tristan Davenne, Otto Caretta, Mike Fitton, Peter Loveridge, Joe O’Dell, Andrew.
Packed Bed Target Design Concept (for EURONu) Tristan Davenne, Ottone Caretta, Peter Loveridge, Chris Densham (RAL); Andrea Longhin, Marco Zito (CEA Saclay)
Engineering studies for CN2PY secondary beam. LAGUNA-LBNO General Helsinki, 26/08/20141 F. Sanchez Galan (CERN) on behalf of the CERN Secondary.
UK contribution to LBNF/DUNE beam and target system Chris Densham, Tristan Davenne, Otto Caretta, Mike Fitton, Peter Loveridge, Joe O’Dell, Andrew Atherton,
High Power Target Experience with T2K Chris Densham T2K Beamline Collaboration including RAL / KEK / Kyoto.
1 Target Introduction Chris Densham STFC/RAL Mu2e Target, Remote Handling, and Heat & Radiation Shield Review Nov
T2K Target status PASI Meeting Fermilab 11 th November Chris Densham STFC Rutherford Appleton Laboratory On behalf of the T2K beam collaboration.
New cLFV search experiments using the mu-e conversion process Satoshi MIHARA KEK, Japan.
Chris Densham Figures of Merit for target design for neutrons, neutrinos… Chris Densham Rutherford Appleton Laboratory.
Horn and Solenoid options in Neutrino Factory M. Yoshida, Osaka Univ. NuFact08, Valencia June 30th, A brief review of pion capture scheme in NuFact,
Target work plan for LBNO study Chris Densham STFC Rutherford Appleton Laboratory.
Irradiated T2K Ti alloy materials test plans
Horn and Solenoid Options in Neutrino Factory
Tungsten Powder Test at HiRadMat Scientific Motivation
Peter Loveridge High Power Targets Group
Beam Window Studies for Superbeams
EUROnu Beam Window Studies Stress and Cooling Analysis
SPL-SB and NF Beam Window Studies Stress Analysis
What is μ-e Conversion ? μ μ-+(A,Z)→e-+(A,Z) muon decay in orbit
Presentation transcript:

COMET Target Design (COherent Muon to Electron Transition) Satoshi MIHARA

COMET Experiment Mu-e conversion search – Charged lepton flavor violation – GUT, ν mass origin COMET Target group – RAL Chris Densham Peter Loveridge Tristan Davenne – KEK Makoto Yoshida Satoshi Mihara Proton beam Production target Production target πμπμ Muon stopping target Electron spectrometer proton pulse prompt background muon decay

COMET Staging Approach Phase I Phase II Phase I – Beam background study and achieving an intermediate sensitivity of < GeV, ~3.2kW, ~3 weeks of DAQ Phase II – 8GeV, ~56 kW, 1 year DAQ to achieve the COMET final goal of < sensitivity Starts around μ-μ- μ+μ+ 104MeV/c Phase I 0.03 BG expected in 1.5x10 6 sec running time 10/Sep/2013Satoshi MIHARA, PSI20133

Beam Power Phase I – 8 GeV, 3.2 kW – # of protons per MR bunch equivalent to that of 3.2x(30/8)x2 = 24kW operation at 30GeV Phase II – 8 GeV, 56 kW – Faster repetition cycle is necessary (1.47 sec)

Production Target Phase I (Radiation cooling) – Graphite Refractory material and so is tolerant to high temperature operation Experience in T2K – Tungsten Larger muon yield Radiation cooling may be OK but need careful assessment Phase II (Active cooling) – Tungsten Bad chemistry between tungsten and water Helium cooling instead of water cooling

Radiation cooled tungsten (Phase I) Values used in simulations (not necessarily COMET baseline) Beam power3.2 kW Target heat load194 W Target radius4 mm Beam radius rms1 mm Tungsten emissivity 0.3 Temperature Max = 1298°C Von Mises stress Max = 3.56 MPa

Phase II: How about helium cooling? Values used in simulations (preliminary) Beam power56 kW Target heat load3.4 kW Target radius4 mm Beam size rms1 mm Helium annulus thickness 1 mm Helium inlet pressure8 bar Helium mass flow5 g/s Temperature Max = 921°C Von Mises stress Max = 63 MPa NB effect of beam cycle not included: 1/3 duty factor -> x3 higher stress!

Tungsten yield strength CW operation

Outline layout for annular cooling of target Coolant streamlines

Effect of off-centre beam Temperature profile for beam displacement of 2σ Deformation from beam displacement of 2σ Maximum displacement = 0.07 mm

温度分布(空冷) ・銅の外周 (φ1200) : 5 W/m 2 ℃ ・タングステンコアの外周 (φ700): 5 W/m 2 ℃ - 冷却配管は Phase-I で内蔵させる。 冷却管内を Blower で空気を循環させたら? 冷却管内を Blower で空気を循環させたら? 許容できる!

温度分布(水冷、 Phase-II ) ・シールド中心部: ℃  75 ℃ ・シールド外周部: ℃  42 ℃ ・真空容器: ℃  42 ℃ 冷却なし水冷 許容できる ? ・銅の外周 (φ1200) : 1000 W/m 2 ℃ ・タングステンコアの外周 (φ700): 250 W/m 2 ℃