1 BFEM Trigger Diagnostics Mar 12, 2002 Tsunefumi Mizuno Note: For reference, this document includes some works already reported (pages 2-5 and 7). The.

Slides:



Advertisements
Similar presentations
BFEM Trigger Diagnostics Jan 25, 2002 Tsunefumi Mizuno
Advertisements

Online Monitoring and plane checkout Online monitoring is used at the mine for: –sanity checks - “is everything working” –diagnostics - rates, hot/dead.
1 ACES Workshop, March 2011 Mark Raymond, Imperial College. Two-in-one module PT logic already have a prototype readout chip for short strips in hand CBC.
Digital Logic Design Lecture # 17 University of Tehran.
13/02/20071 Event selection methods & First look at new PCB test Manqi Ruan Support & Discussing: Roman Advisor: Z. ZHANG (LAL) & Y. GAO (Tsinghua))
Alex Moiseev, 02/01/021 ACD VETO SIGNALS AND EFFICIENCY With the recent changes, the following ACD VETO signals will be generated: AEM VETO HIT MAP, created.
1 Background: Use of TKR Trigger One-Shots individual TKR strip channels “true” when analog shaped pulse is above threshold. strips in a plane are OR’d.
1 Scintillating Fibre Cosmic Ray Test Results Malcolm Ellis Imperial College London Monday 29 th March 2004.
GLAST LAT ProjectIA Workshop 6 – Feb28,2006 Preliminary Studies on the dependence of Arrival Time distributions in the LAT using CAL Low Energy Trigger.
28 Feb 2006Digi - Paul Dauncey1 In principle change from simulation output to “raw” information equivalent to that seen in real data Not “reconstruction”,
GLAST LAT Project Apr 1, 2005 E. do Couto e Silva 1/31 Overview of End to End Runs Eduardo do Couto e Silva April 1, 2005 ( not it is not a joke, we finally.
SVACInstrument Analysis Workshop, July 21-22, 2005 N.Giglietto 1 ToT saturated events: a preliminary study N.Giglietto-M. Brigida F.Giordano Science Verification,
A.Chekhtman1 GLAST LAT ProjectCalibration and Analysis group meeting, April, 3, 2006 CAL on-orbit calibration with protons. Alexandre Chekhtman NRL/GMU.
Y. Karadzhov MICE MICO First EMR Plots 1.EMR detector has been successfully incorporated in the MICE DAQ system. 2.First 3 days of data taking in MICE.
Modeling TKR Readout Effects Part 2 Leon R. Analysis Group 12 September 2005.
1 Apr. 28, 2007 Test of the Pulse Height and Time Jitter for the IHEP Full-Size RPC’s with 8-m-Long Readout Strip Planes C. Lu, K. McDonald and W. Sands.
GLAST LAT ProjectMarch 24, C Tracker Peer Review, WBS GLAST Large Area Telescope: Tracker Subsystem WBS C: On-Orbit Calibration and.
The first testing of the CERC and PCB Version II with cosmic rays Catherine Fry Imperial College London CALICE Meeting, CERN 28 th – 29 th June 2004 Prototype.
GLAST LAT ProjectDOE/NASA CD3-Critical Design Review, May 12, 2003 S. Ritz Document: LAT-PR Section 03 Science Requirements and Instrument Design.
GLAST LAT Readout Electronics Marcus ZieglerIEEE SCIPP The Silicon Tracker Readout Electronics of the Gamma-ray Large Area Space Telescope Marcus.
GLAST LAT ProjectGLAST Flight Software IDT, October 16, 2001 JJRussell1 October 16, 2001 What’s Covered Activity –Monitoring FSW defines this as activity.
GLAST LAT Readout Electronics Marcus ZieglerIEEE SCIPP The Silicon Tracker Readout Electronics of the Gamma-ray Large Area Space Telescope Marcus.
Octal ASD Certification Tests at Michigan J. Chapman, Tiesheng Dai, & Tuan Bui August 30, CERN.
IA meeting, Feb. 3, 2006 Mutsumi Sugizaki TKR Noise Stdudy 1 LAT TKR Noise Study Current Status Mutusmi Sugizaki (and short comment about TOT=255 event)
J. Estrada - Fermilab1 AFEII in the test cryostat at DAB J. Estrada, C. Garcia, B. Hoeneisen, P. Rubinov First VLPC spectrum with the TriP chip Z measurement.
GLAST LAT ProjectLadder wirebonds break - MRB 03 Dec 2004 L. Latronico1 Ladder Wirebonds break MRB Meeting – 3 december 2004.
Tracker Reconstruction SoftwarePerformance Review, Oct 16, 2002 Summary of Core “Performance Review” for TkrRecon How do we know the Tracking is working?
ACD calibrations Pedestals Measured from online script Measure PHA w/ HV off, no charge injection Use cyclic triggers ~ ADC counts, very narrow.
10/21/2005 Inst Ana Meeting TKR Noise Flares1 TKR Noise Flares observed in TKR #11 and #8 Mutsumi Sugizaki, Hiro Tajima, and TKR team.
Noise Analysis in NaIAD Matthew Robinson Experiment now running reliably therefore time to work on getting the best from the analysis.
06/03/06Calice TB preparation1 HCAL test beam monitoring - online plots & fast analysis - - what do we want to monitor - how do we want to store & communicate.
Simulation issue Y. Akiba. Main goals stated in LOI Measurement of charm and beauty using DCA in barrel –c  e + X –D  K , K , etc –b  e + X –B 
1 Realistic top Quark Reconstruction for Vertex Detector Optimisation Talini Pinto Jayawardena (RAL) Kristian Harder (RAL) LCFI Collaboration Meeting 23/09/08.
Optimising Cuts for HLT George Talbot Supervisor: Stewart Martin-Haugh.
O After integration and test at SLAC and GSFC, BFEM was shipped to the National Scientific Balloon Facility (NSBF) at Palestine, Texas. The experiment.
GLAST LAT ProjectMarch 24, F Tracker Peer Review, WBS GLAST Large Area Telescope: Tracker Subsystem WBS F: On-Orbit Calibration and.
Hit rate at high luminosity logical channels - ghosts – efficiency Toy Monte Carlo : # I have assumed a uniform particle distribution inside the TS # I.
AND/OR - Are MC and Data (in)consistent? - further analysis and new measurements to do - Effects on inefficiency evaluation 1 G. Martellotti 21/05/2015.
Pixel Offline Study Jianchun Wang Syracuse University 11/05/04, Pixel testbeam meeting.
Geant4 for GLAST BFEM -Comparison with Distributions in BFEM Data – T. Mizuno, H. Mizushima, S. Ogata, Y. Fukazawa (Hiroshima/SLAC) M. Roterman, P. Valtersson.
Trigger Anomaly in BFEM? February 13, 2002 Tsunefumi Mizuno and Tune Kamae.
RPC Timing Results with Final Splitters Gianpaolo Carlino INFN Napoli The Napoli RPC Group: M.Alviggi, V. Canale, M. Caprio, G.C., R. de Asmundis, M. Della.
Min-DHCAL: Measurements with Pions Benjamin Freund and José Repond Argonne National Laboratory CALICE Collaboration Meeting Max-Planck-Institute, Munich.
May 17-19, 2005D. Zaborov, ARENA workshop1 Dmitry Zaborov for the ITEP group Berlin, May 2005 Analysis methods of ITEP Baikal data.
CALICE Tungsten HCAL Prototype status Erika Garutti Wolfgang Klempt Erik van der Kraaij CERN LCD International Workshop on Linear Colliders 2010, October.
Anatoli Romaniouk TRT Test manual Some important information p. 2-3Some important information p. 2-3 Noise studies p.4-7Noise studies p.4-7 Operation with.
Progress report of the GLAST ACD Beam Test at CERN (Backsplash study) simulation and analysis Tsunefumi Mizuno, Hirofumi Mizushima (Hiroshima Univ.) and.
The Detector Performance Study for the Barrel Section of the ATLAS Semiconductor Tracker (SCT) with Cosmic Rays Yoshikazu Nagai (Univ. of Tsukuba) For.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
Gamma-ray Large Area Space Telescope Tower 1 TVAC tests Bad ladders issues.
Comparison of different chamber configurations for the high luminosity upgrade of M2R2 G. Martellotti - LNF - 13/03/2015 Roma1 + Alessia.
1 Study of Data from the GLAST Balloon Prototype Based on a Geant4 Simulator Tsunefumi Mizuno February 22, Geant4 Work Shop The GLAST Satellite.
After integration and test at SLAC and GSFC, BFEM was shipped to the National Scientific Balloon Facility (NSBF) at Palestine, Texas. The experiment was.
USBPix Readout System using FE-I4/A Chip Status Update: ToT calibration and Finalization of Tuning Procedure Jimin Kim and Austin Piehl Department of Physics.
by students Rozhkov G.V. Khalikov E.V. scientific adviser Iyudin A.F.
Acd Veto Latching The Acd front end electronics generate a veto primitive when a discriminator goes above threshold. But. The signal is split: One path.
M. Manghisoni, L. Ratti Università degli Studi di Pavia INFN Pavia
Preliminary considerations on the strip readout chip for SVT
Mini-Tower test results
L. Ratti, M. Manghisoni Università degli Studi di Pavia INFN Pavia
GLAST LAT tracker signal simulation and trigger timing study
Calice Collaboration Meeting Sep. 2009
USBPix Readout System using FE-I4/A chip Status Update: Finalization of Threshold Tuning and Minor updates Jimin Kim and Austin Piehl Department of Physics.
Outline Analysis of some real data taken with the GLAST minitower (cosmic rays only). Offline analysis software used. Full Monte Carlo simulation using.
Han Jifeng BESIII MUON GROUP IHEP, CAS
GLAST Large Area Telescope:
Backgrounds using v7 Mask in 9 Si Layers at a Muon Higgs Factory
Tower A: A First Look Finding the Data: Login: THIS ONE! user: glast
Studies of the Time over Threshold
Analysis of GLAST Balloon Experiment Data
Presentation transcript:

1 BFEM Trigger Diagnostics Mar 12, 2002 Tsunefumi Mizuno Note: For reference, this document includes some works already reported (pages 2-5 and 7). The study is done with help of many colleagues, especially Tony Waite and Masaharu Hirayama.

2 Trigger Efficiency of each Layer (1) Hit in the data Fast-Or capture As already reported, three layers do not participate to trigger and an apparent “inefficiency” is seen in all other layers. A Blue histogram (counts in data) and a Red one (counts in Fast-Or capture) disagree with each other.

3 Trigger Efficiency of each Layer (2) Hit in the data Fast-Or capture Here we select charged events with following criteria one or more ACD tiles show PHA above 0.2MIP Single track (number of tracks reconstructed is 2 -- x and y) The track is straight (reconstructed value of chi^2 is below 0.1) All 26 layers are hit. Then, an apparent trigger inefficiency becomes typically 20 % and reaches up to ~50 % (layer23). Does BFEM really miss the trigger with such high probability?

4 Trigger Capture efficiency Study was made if we see any events where no 3-in-row is found in trigger capture, and we found that all events registered >=3 in-row. We can conclude that trigger capture worked for the layers that caused L1T.

5 Possible Explanations 1.Trigger Mask and Hit Mask was different. When hits occurred in such strips, the layer showed hits but could not cause trigger. 2.Some layers are noisier than others and “data” may include accidental hits. 3.Some layers are noisier than others and accidental hits prior to the event caused dead time to the Fast-Or signal that participated in the trigger. 4.First 3-xy-pairs cause immediate (~100ns) capture of all Fast- Or 1-shots. This is too short compared to the rise-time of the signal of the SSD and the propagation time through the readout chips in a layer (a possibility proposed by Dave Lauben).

6 Trigger and Hit Mask (possibility #1) mask FE --plane=0 --strip= type=data mask FE --plane=3 --strip=530 --type=data mask FE --plane=3 --strip=531 --type=data mask FE --plane=4 --strip= type=data mask FE --plane=4 --strip= type=data mask FE --plane=4 --strip= type=data mask FE --plane=6 --strip= type=data mask FE --plane=6 --strip= type=data mask FE --plane=6 --strip= type=data mask FE --plane=7 --strip=82 --type=data mask FE --plane=7 --strip=85 --type=data mask FE --plane=7 --strip=86 --type=data mask FE --plane=7 --strip=506 --type=data mask FE --plane=7 --strip= type=data mask FE --plane=7 --strip= type=data mask FE --plane=7 --strip= type=data mask FE --plane=9 --strip=88 --type=data mask FE --plane=9 --strip=89 --type=data mask FE --plane=9 --strip=90 --type=data mask FE --plane=9 --strip= type=data mask FE --plane=9 --strip= type=data mask FE --plane=9 --strip= type=data mask FE --plane=10 --strip= type=data mask FE --plane=10 --strip= type=data mask FE --plane=14 --strip=285 --type=data mask FE --plane=14 --strip=288 --type=data mask FE --plane=15 --strip= type=data mask FE --plane=15 --strip= type=data mask FE --plane=15 --strip= type=data mask FE --plane=16 --strip=382 --type=data mask FE --plane=16 --strip=383 --type=data mask FE --plane=17 --strip=305 --type=data mask FE --plane=17 --strip= type=data mask FE --plane=17 --strip= type=data mask FE --plane=17 --strip= type=data mask FE --plane=17 --strip= type=data mask FE --plane=17 --strip= type=data mask FE --plane=21 --strip=613 --type=data mask FE --plane=21 --strip=758 --type=data mask FE --plane=21 --strip=761 --type=data mask FE --plane=23 --strip=16 --type=data mask FE --plane=23 --strip=18 --type=data mask FE --plane=23 --strip=55 --type=data mask FE --plane=23 --strip=666 --type=data mask FE --plane=23 --strip=667 --type=data mask FE --plane=24 --strip=39 --type=data mask FE --plane=24 --strip=40 --type=data mask FE --plane=24 --strip=583 --type=data mask FE --plane=25 --strip=80 --type=data mask FE --plane=25 --strip=81 --type=data mask FE --plane=25 --strip=84 --type=data mask FE --plane=25 --strip=85 --type=data mask FE --plane=0 --strip= type=trigger mask FE --plane=3 --strip=530 --type=trigger mask FE --plane=3 --strip=531 --type=trigger mask FE --plane=4 --strip= type=trigger mask FE --plane=4 --strip= type=trigger mask FE --plane=4 --strip= type=trigger mask FE --plane=6 --strip= type=trigger mask FE --plane=6 --strip= type=trigger mask FE --plane=6 --strip= type=trigger mask FE --plane=7 --strip=82 --type=trigger mask FE --plane=7 --strip=85 --type=trigger mask FE --plane=7 --strip=86 --type=trigger mask FE --plane=7 --strip=506 --type=trigger mask FE --plane=7 --strip= type=trigger mask FE --plane=7 --strip= type=trigger mask FE --plane=7 --strip= type=trigger mask FE --plane=9 --strip=88 --type=trigger mask FE --plane=9 --strip=89 --type=trigger mask FE --plane=9 --strip=90 --type=trigger mask FE --plane=9 --strip= type=trigger mask FE --plane=9 --strip= type=trigger mask FE --plane=9 --strip= type=trigger mask FE --plane=10 --strip= type=trigger mask FE --plane=10 --strip= type=trigger mask FE --plane=14 --strip=285 --type=trigger mask FE --plane=14 --strip=288 --type=trigger mask FE --plane=15 --strip= type=trigger mask FE --plane=15 --strip= type=trigger mask FE --plane=15 --strip= type=trigger mask FE --plane=16 --strip=382 --type=trigger mask FE --plane=16 --strip=383 --type=trigger mask FE --plane=17 --strip=305 --type=trigger mask FE --plane=17 --strip= type=trigger mask FE --plane=17 --strip= type=trigger mask FE --plane=17 --strip= type=trigger mask FE --plane=17 --strip= type=trigger mask FE --plane=17 --strip= type=trigger mask FE --plane=21 --strip=613 --type=trigger mask FE --plane=21 --strip=758 --type=trigger mask FE --plane=21 --strip=761 --type=trigger mask FE --plane=23 --strip=16 --type=trigger mask FE --plane=23 --strip=18 --type=trigger mask FE --plane=23 --strip=55 --type=trigger mask FE --plane=23 --strip=666 --type=trigger mask FE --plane=23 --strip=667 --type=trigger mask FE --plane=24 --strip=39 --type=trigger mask FE --plane=24 --strip=40 --type=trigger mask FE --plane=24 --strip=583 --type=trigger mask FE --plane=25 --strip=80 --type=trigger mask FE --plane=25 --strip=81 --type=trigger mask FE --plane=25 --strip=84 --type=trigger mask FE --plane=25 --strip=85 --type=trigger Trigger mask (right) and Hit mask pattern (left) are the same with each other. (Information from Tony Waite)

7 Noise occupancy (possibilities #2 and #3) The average channel occupancy is of the order of 10^-6 (H. Ohyama, W. Kroeger and H. Sadrozinski; LAT-TD-00364) Oh the other hand, noise occupancy of the order of 10^-4 is required to explain the apparent inefficiency of ~20%(Gary Godfrey; Mathcad- Snrate7.pdf) Eye-scan of charged events in BFEM real data also showed that the occupancy of extra-hits (hits that do not belong to straight line) is up to ~10^-5 (T. Kamae and T. Mizuno; BFEMTriggerAnormaly.ppt).

8 TOT Distribution and the propagation delay (possibility #4) A strip of smaller energy deposition requires longer time to hit the comparator, whereas BFEM immediately (~100ns) scan the Fast-Or when any three x-y pairs in-a-raw cause trigger. Then, BFEM may fail to capture the Fast-Or. When energy deposition is small in a layer, the value of TOT is also small. Is there any relation between the TOT and the (apparent) trigger inefficiency? BFEM may also fail to capture the Fast-Or when the propagation delay is not negligible. Following two methods give the value of TOT. getToT(0); gives TOT of left controller. getToT(1); gives TOT of right controller. The nomenclature of left/right controller and R0(adjacent to Strip 0)/R1 controller is swapped in somewhere. Here I assume that getToT(0) gives TOT of R0 for layers 0, 2, 4, …, 24 and R1 for layers 1, 3, 5, …, 25. The read-out configuration is given in page 9 and TOT distributions are given in pages Hit strip distribution is also shown in page 13.

9 Read-out configuration The configuration shown below is given by Tony Waite. For most layers, R0 read 12 chips and R1 read 13 chips. In some layers, all information is read out by one controller (R0 or R1).

10 TOT Distribution (R0) of all layers #25 #18 #19 #12 #11 #0 #4 #5 Blue: all events where the layer has hits read-out by R1. Red: events where the BFEM failed to capture the Fast-Or of the corresponding layer.

11 TOT Distribution (R1) of all layers #25 #18 #19 #12 #11 #0 #4 #5 BFEM tends to fail to capture the Fast-Or when the TOT (energy deposition) is small (red histogram is narrower than the blue one). Blue: all events where the layer has hits read-out by R1. Red: events where the BFEM failed to capture the Fast-Or of the corresponding layer.

12 TOT Distribution of Layer23 All events Events where BFEM did not capture the Fast-Or of Layer23 (the value of TOT=5 means 1us) BFEM tends to fail to capture the Fast-Or when the TOT (energy deposition) is small. Sometimes BFEM failed to capture the Fast-Or even when TOT is high.

13 Hit Strip Distribution of Layer23 All events Events where BFEM did not capture the Fast-Or of Layer23 BFEM tends to fail to capture the Fast-Or when the hit is far from the read-out controller (propagation delay?). R0(not used for this layer) R1

14 Conclusion Trigger/Hit mask are the same with each other and cannot explain the apparent trigger inefficiency (page 6). Noise occupancy is too small (by a factor of ) to explain the trigger inefficiency seen in the data (page 7). BFEM tends to fail to capture the Fast-Or when the energy deposition (the value of TOT) is small or the propagation delay is large (hits are far from the read-out chip). They could be the main reason of the apparent trigger inefficiency (pages 8-13). Do the width of Fast-Or 1-shot is larger than the (“rise- time of the signal” + ”maximum of the propagation delay”)? If not, BFEM may have missed some events (and the GLAST satellite will do).