Flat-beam IR optics José L. Abelleira, PhD candidate EPFL, CERN BE-ABP Supervised by F. Zimmermann, CERN Beams dep. Thanks to: O.Domínguez. S Russenchuck,

Slides:



Advertisements
Similar presentations
Crab crossing and crab waist at super KEKB K. Ohmi (KEK) Super B workshop at SLAC 15-17, June 2006 Thanks, M. Biagini, Y. Funakoshi, Y. Ohnishi, K.Oide,
Advertisements

Beam-Beam Effects for FCC-ee at Different Energies: at Different Energies: Crab Waist vs. Head-on Dmitry Shatilov BINP, Novosibirsk FCC-ee/TLEP physics.
Beam-Beam Collision Studies for DA  NE with Crabbed Waist Crabbed Waist Advantages Results for SIDDHARTA IR P.Raimondi, D.Shatilov (BINP), M.Zobov INFN.
Towards an extremely-flat beam optics with large crossing angle for the LHC José L. Abelleira, PhD candidate EPFL, CERN Beams dep. Supervised by F. Zimmermann,
Study of the Luminosity of LHeC, a Lepton Proton Collider in the LHC Tunnel CERN June F. Willeke, DESY.
1 LHeC Considerations for a Lepton Hadron Collider Option for the LHC F. Willeke, BNL The 4th Electron Ion Collider Workshop Hampton University,
Luminosity Prospects of LHeC, a Lepton Proton Collider in the LHC Tunnel DESY Colloquium May F. Willeke, DESY.
Beam-beam simulations M.E. Biagini, K. Ohmi, E. Paoloni, P. Raimondi, D. Shatilov, M. Zobov INFN Frascati, KEK, INFN Pisa, SLAC, BINP April 26th, 2006.
Beam-Beam Optimization for Fcc-ee at High Energies (120, 175 GeV) at High Energies (120, 175 GeV) Dmitry Shatilov BINP, Novosibirsk 11 December 2014, CERN.
The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, N.Kazarinov.
Emittance Growth from Elliptical Beams and Offset Collision at LHC and LRBB at RHIC Ji Qiang US LARP Workshop, Berkeley, April 26-28, 2006.
Beam-Beam Simulations for RHIC and LHC J. Qiang, LBNL Mini-Workshop on Beam-Beam Compensation July 2-4, 2007, SLAC, Menlo Park, California.
October 4-5, Electron Lens Beam Physics Overview Yun Luo for RHIC e-lens team October 4-5, 2010 Electron Lens.
Simulation of direct space charge in Booster by using MAD program Y.Alexahin, A.Drozhdin, N.Kazarinov.
CASA Collider Design Review Retreat HERA The Only Lepton-Hadron Collider Ever Been Built Worldwide Yuhong Zhang February 24, 2010.
Luminosity of the Super-Tau-Charm Factory with Crab Waist D. Shatilov BINP, Novosibirsk TAU’08 Workshop, Satellite Meeting “On the Need for a Super-Tau-Charm.
SuperB Lattice Studies M. Biagini LNF-INFN ILCDR07 Workshop, LNF-Frascati Mar. 5-7, 2007.
Plan for Review of FCC- ee Optics and Beam Dynamics Frank Zimmermann FCC-ee Design Meeting 31 August 2015.
1 BINP Tau-Charm Project 3 February 2010, KEK, Tsukuba E.Levichev For the BINP C-Tau team.
1 Experience at CERN with luminosity monitoring and calibration, ISR, SPS proton antiproton collider, LEP, and comments for LHC… Werner Herr and Rüdiger.
Beam-beam compensation at RHIC LARP Proposal Tanaji Sen, Wolfram Fischer Thanks to Jean-Pierre Koutchouk, Frank Zimmermann.
February 5, 2005D. Rubin - Cornell1 CESR-c Status -Operations/Luminosity -Machine studies -Simulation and modeling -4.1GeV.
Lattice design for FCC-ee Bastian Haerer (CERN BE-ABP-LAT, Karlsruhe Institute of Technology (KIT)) 1 8 th Gentner Day, 28 October 2015.
Present MEIC IR Design Status Vasiliy Morozov, Yaroslav Derbenev MEIC Detector and IR Design Mini-Workshop, October 31, 2011.
Introduction of Accelerators for Circular Colliders 高亮度 TAU-CHARM 工厂 & 先进光源, 2014/09.
Crossing Schemes Considerations and Beam-Beam Work plan T. Pieloni, J. Barranco, X. Buffat, W. Herr.
HF2014 Workshop, Beijing, China 9-12 October 2014 Challenges and Status of the FCC-ee lattice design Bastian Haerer Challenges.
Layout and Arcs lattice design A. Chancé, B. Dalena, J. Payet, CEA R. Alemany, B. Holzer, D. Schulte CERN.
LHeC Final Focus System Jose L. Abelleira, PhD candidate CERN, EPFL Thanks to: H. Garcia, R. Tomas, F. Zimmermann 2012 CERN-ECFA-NuPECC Workshop on the.
Muon Collider Physics Workshop FNAL November 10-12, 2009 Muon Collider Lattice Design FERMI NATIONAL ACCELERATOR LABORATORY US DEPARTMENT OF ENERGY f Y.
Collision with a crossing angle Large Piwinski angle
First evaluation of Dynamic Aperture at injection for FCC-hh
Optimization of the Collider rings’ optics
MDI and head-on collision option for electron-positron Higgs factories
LHeC interaction region
fundamental equations of LHC performance
Field quality update and recent tracking results
Large Booster and Collider Ring
Beam-beam Effects in Hadron Colliders
First Look at Nonlinear Dynamics in the Electron Collider Ring
Laboratoire de L’Accélérateur Linéaire
Status of CEPC lattice design
BINP Tau-Charm Project
CASA Collider Design Review Retreat Other Electron-Ion Colliders: eRHIC, ENC & LHeC Yuhong Zhang February 24, 2010.
Progress of SPPC lattice design
LHC (SSC) Byung Yunn CASA.
Collider Ring Optics & Related Issues
Frank Zimmermann & Walter Scandale
Pushing the LHC nominal luminosity with flat beams
Negative Momentum Compaction lattice options for PS2
Beam-Beam Effects in High-Energy Colliders:
SuperB IRC Meeting Frascati, Nov. 13th 2007
CEPC optics and booster optics
Negative Momentum Compaction lattice options for PS2
Yuri Nosochkov Yunhai Cai, Fanglei Lin, Vasiliy Morozov
Update on MEIC Nonlinear Dynamics Work
Fanglei Lin, Yuhong Zhang JLEIC R&D Meeting, March 10, 2016
MEIC New Baseline: Part 7
Compensation of Detector Solenoids
G.H. Wei, V.S. Morozov, Fanglei Lin Y. Nosochkov (SLAC), M-H. Wang
Progress Update on the Electron Polarization Study in the JLEIC
Integration of Detector Solenoid into the JLEIC ion collider ring
MEIC New Baseline: Performance and Accelerator R&D
Possibility of MEIC Arc Cell Using PEP-II Dipole
JLEIC Electron Ring Nonlinear Dynamics Work Plan
Crab Crossing Named #1 common technical risk (p. 6 of the report)
Fanglei Lin JLEIC R&D Meeting, August 4, 2016
MEIC Alternative Design Part III
Large emittance scenario for the Phase II Upgrade of the LHC
Presentation transcript:

Flat-beam IR optics José L. Abelleira, PhD candidate EPFL, CERN BE-ABP Supervised by F. Zimmermann, CERN Beams dep. Thanks to: O.Domínguez. S Russenchuck, D.Shatilov, M. Zobov CERN, 22 th February 2013 Joint Snowmass-EUCARD/AccNet-HiLumi LHC meeting Frontier capabilities for Hadron colliders

Contents Crab-waists collisions concept Flat beam optics for LHC CW for HE-LHC – Parameters – Time evolution Conclusions 2Jose L. Abelleira

Crab-waist collisions (I) Jose L. Abelleira3 An important limitation in hadron machines is beam-beam tune shift More luminosity Length of the Collision section With Head-on collisions or small φ But in LPA regime ! For LHC

Crab-waist collisions (II) Jose L. Abelleira4 Suppressed by crab-waist scheme On the other hand, a LPA induces strong X-Y resonances Normal collision schemeCrab-waist collision scheme P.Raimondi, D.Shatilov, M. Zobov σ x * /σ y * ≥10 Suitable for lepton machines More challenging for hadron colliders Condition for cw collisions 2 sextupoles spaced from the IP β x * /β y * ≥100

Flat beam optics for LHC Local chromatic correction in both planes + crab-waist collisions sext1 sext5 sext3 Chromatic correction β x * =1.5 m β y * =1.5 cm 5Jose L. Abelleira ΔμxΔμx ΔμyΔμy sext1 sext2 sext3 sext4 sext5 π/2 3π/2 2π2π5π/2 sext2 sext4 CRAB-WAIST SEXTUPOLE π/2 Phase advance from IP Separation magnets

Flat beam optics for LHC 45 mm 15σ y 15σ x σ x/ σ y =10 Minimum required according to beam-beam simulations. Reference orbit 6Jose L. Abelleira

Crab-waist simulations CW = 0CW = 0.5 Resonances 7Jose L. Abelleira Frequency Map Analysis (FMA) Effective for the beam-beam resonance suppression. Plot shown for θ c = 1.5 mrad Dmitry Shatilov Mikhail Zobov

Luminosity evolution Jose L. Abelleira8 Beam lifetime due to burn off Higher L INT ↘we just have to adjust the parameters to have SR damping as a compensator for the burn off

Symmetric optics Jose L. Abelleira9 IR optics is symmetric. Two options – Match the sym. IR optics to the antisymetric arc optics. – Design a symmetric optics in the arcs. N N S S N N S S N N S S

Jose L. Abelleira10 B 0 =-5.8 T g=115 T/m Double half quadrupole B y (x) proposed for c-w LHC as a solution to have diff pol quadrupoles for the 2 beams in a same aperture S. Russenchuck

Jose L. Abelleira11 Gradient : 220 T/m B y (x) Double aperture magnets with same polarity (as in LHC arc quadrupoles) Double aperture magnets with same polarity for c-w HE-LHC S. Russenchuck 18.4 cm Gradient : 219 T/m

Parameters (I) 12Jose L. Abelleira c.m. energy [TeV]33 Circumference [km]26.7 Dipole field [T]20 Dipole coil aperture [mm]40 Beam half aperture [mm]13 Injection energy [TeV]>1.0 Initial longitudinal emittance [eVs]5.67 r.m.s. bunch length [cm]7.7 peak luminosity [cm -2 s -1 ] Due to the fast emittance shrink Initial luminosity ≠ peak luminosity The initial beam size has been chosen to allow c-w from the beginning of a run σ x * /σ y * =10 O. Domínguez. HE-LHC/VHE-LHC parameters, time evolutions & integrated luminosities. This workshop

Parameters (II) 13Jose L. Abelleira θ = 2 mradθ = 8 mrad initial luminosity [cm -2 s -1 ] N 0 [10 11 ] Crossing angle [mrad]28 Technology for last quad.Double-half quad.Double aperture quad. IP beta function (H/V) [m]3/0.03 Norm. initial emittance (H/V) [μm rad]2.1 Initial beam size IP [μm]19/1.9 Number of bunches1404 Crossing scheme horizontal at the two IP Initial Piwinski angle Initial total tune shifts [10 -3 ]3.2/1.30.3/0.4 maximum total tune shifts8.9/2.41.1/1.2 Beam separation [σ] O. Domínguez.

Parameters (III) 14Jose L. Abelleira θ = 2 mradθ = 8 mrad Long. SR emittance damping time [h]1.01 Transverse SR emittance damping time [h]2.02 Initial horizontal IBS emittance rise time [h] Initial vertical IBS emittance rise time [h] Initial longitudinal IBS rise time [h] Beam intensity lifetime [h] Optimum run time [h]68.5 Opt. av. Int. luminosity/day [fb -1 ] O. Domínguez.

Jose L. Abelleira15 emittance Total tune shifts Beam size ratio Long. Beam sizePiwinski angle Far below 0.01 C-w condition Transverse beam sizes Luminosity O. Domínguez.

Jose L. Abelleira16 emittance Total tune shifts Long. Beam sizePiwinski angle Transverse beam sizes Luminosity Even far below 0.01 O. Domínguez. Beam size ratio

Luminosity evolution Jose L. Abelleira17 O. Domínguez.

Conclusions An extremely-flat beam optics (β y * /β y * =100) is conceptual possible for LHC and HELHC – Large Piwinski angle, to reduce the collision area and allow for a lower β y * – Local chromatic correction – Possibility to have crab waist collisions that can increase luminosity and suppress resonances – Can accept higher brightness. 18Jose L. Abelleira – Significant increase in Lint With crab-waist collisions there is no tune shift limitation: no need for emittance blow up. – LPA allows for a higher brightness: increases beam lifetime – SR damping for the three planes increases luminosity

Thank you… …For your attention 19Jose L. Abelleira