Presentation is loading. Please wait.

Presentation is loading. Please wait.

Towards an extremely-flat beam optics with large crossing angle for the LHC José L. Abelleira, PhD candidate EPFL, CERN Beams dep. Supervised by F. Zimmermann,

Similar presentations


Presentation on theme: "Towards an extremely-flat beam optics with large crossing angle for the LHC José L. Abelleira, PhD candidate EPFL, CERN Beams dep. Supervised by F. Zimmermann,"— Presentation transcript:

1 Towards an extremely-flat beam optics with large crossing angle for the LHC José L. Abelleira, PhD candidate EPFL, CERN Beams dep. Supervised by F. Zimmermann, CERN Beams dep. Thanks to: S. Fartoukh, S.Russenschuck (CERN), D.Shatilov (BINP SB RAS,Novosibirsk), R. Tomas (CERN), C. Milardi, M. Zobov (INFN/LNF, Frascati (Roma)) Warsaw, 25 th April 2012

2 Contents Flat beam optics. Comparison. Double half-quadrupole Large Piwinski angle & crab-waist collisions Luminosity Future work, open questions Conclusions 2 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

3 Flat beam optics Peak luminosity To increase luminosity: -Reduce both σ x * and σ y * -Substantially reduce σ y * ΔμxΔμx ΔμyΔμy sext1 sext2 sext3 π/2 3π/2 π/2 π 5π/2 Local chromatic correction in Y. First time ever for LHC! sext1 sext2 sext3 Chromatic correction β x * =1.5 m β y * =1.5 cm β x * β y * =15cmx15cm (nominal ATS optics with crab cavities) Crab –waist collisions 3 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

4 45 mm Large crossing angle-> large Piwinski angle 15σ y 15σ x σ x/ σ y =10 Minimum required according to beam-beam simulations. 2 mrad Reference orbit 4 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

5 Actual LHC optics IP The 2 beams see opposite gradients + 5 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

6 Flat beam LHC optics IP The 2 beams see the same gradients - + How to produce opposite gradient in the same pipe? 6 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

7 Double half-quad B 0 =-5.8 T g=115 T/m NbTi S.Russenschuck 7 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

8 Kick due to the dipolar term 8 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

9 Matching Arc (MQ11) β x =127 m β y =21 m D x =1.5 m β x =20 m β y =207 m D x =0.6 m DSMSFF Separation bending magnets 9 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

10 Large Piwinski angle Luminosity reduction through F but… 1-Decrease overlapping area. Lower β y decrease Head-on or small φLarge Piwinski angle Hourglass effect limits β y decrease ! 2-More particles N for the same beam-beam tune shift 3-It opens the possibility for crab-waist collisions Collision section (CS) 10 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

11 Crab-waist collisions Normal collision scheme Crab-waist collision scheme With Large Piwinski Angle Collision Point ≠ Interaction Point P.Raimondi, D.Shatilov, M. Zobov 11 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

12 Crab-waist collisions Conditions Sextupole strength In particular 12 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC. P.Raimondi, D.Shatilov, M. Zobov

13 Crab-waist simulations Resonance suppression CW = 0 CW = 0.5 Dmitry Shatilov Mikhail Zobov 13 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

14 Luminosity gain Nx10 11 \ε n (μm) 3.753.532.52.2 1.15 0.62620.67210.78680.9471.0776 1.5 1.06531.14351.33871.61111.8334 2 1.89392.03282.37982.86423.2594 2.5 2.95923.17633.71854.47535.0928 3 4.26134.57385.35466.44447.3336 Luminosity (10 34 cm -1 s -1 ) Nx10 11 \ε n (μm) 3.753.532.52.2 1.15 1.19911.29381.52941.85632.1217 1.5 2.042.20122.6023.15813.6097 2 3.62663.91324.62575.61446.4173 2.5 5.66666.11437.22768.772510.027 3 8.168.804610.407812.632414.4389 Main limitation: the crossing angle due to the separation of the double half quad Further improvements in the double half-quad. design can reduce the crossing angle (Nb 3 Sn) θ/2= 2 mrad θ/2=1 mrad 14 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

15 Flat emittance Limitation: aperture of the half quad Solution: reduce ε y keeping constant ε x ε y ε β hq ε σ hq βy*βy* εxεx εyεy β hq Squeeze of the emittance ellipse β y increase in the half-quad.->reduction on σ y * = sqrt(ε y β y * ) β x decrease in the half-quad.->reduction of horizontal chromatic aberrations -> increase on σ x * = sqrt(ε x β x * ) ->Geometric reduction factor increased F=(1+ (ϴ/2)σ z /σ x ) -1/2 Luminosity increase through significant σ y * reduction and F increase 15 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

16 Flat emittance Luminosity Keep ε x ε y constant and vary ε x/ ε y Θ=4 mrad N=2x10 11 16 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

17 Work in the next months – Study of the aberrations – Rematch the dispersion – Improvement of the half-quad – Dynamic aperture – Beam-beam simulations 17 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

18 Open questions – Field quality of the double half-quad & correction scheme – Dispersion matching for the chromatic correction – 2 nd order dispersion cancellation 18 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

19 Conclusions An extremely-flat beam optics (β y * /β y * =100) is conceptual possible for LHC – Large Piwinski angle, to reduce the collision area and allow for a lower β y decrease – Local vertical chromatic correction – Possibility to have crab waist collisions that can increase luminosity and suppress resonances – Can accept higher brightness. The performance of the new optics can be improved – Future half-quad designs (Nb 3 Sn) – Using a flat emittance – HE-LHC? Already flat emittance due to SR 19 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.

20 Thank you… …For your attention 20 Jose L. Abelleira. Towards an extremely-flat beam optics with large crossing angle for the LHC.


Download ppt "Towards an extremely-flat beam optics with large crossing angle for the LHC José L. Abelleira, PhD candidate EPFL, CERN Beams dep. Supervised by F. Zimmermann,"

Similar presentations


Ads by Google