 周二下午 1 : 30—4 : 15 在软件楼 4 楼密码与信 息安全实验室答疑  周三下午 1 : 15 到 3 : 15 期中测验.

Slides:



Advertisements
Similar presentations
CSE 211 Discrete Mathematics
Advertisements

 Theorem 5.9: Let G be a simple graph with n vertices, where n>2. G has a Hamilton circuit if for any two vertices u and v of G that are not adjacent,
Chapter 8 Topics in Graph Theory
Chapter 9 Graphs.
Lecture 5 Graph Theory. Graphs Graphs are the most useful model with computer science such as logical design, formal languages, communication network,
MCA 202: Discrete Mathematics under construction Instructor Neelima Gupta
22C:19 Discrete Math Graphs Fall 2010 Sukumar Ghosh.
Walks, Paths and Circuits Walks, Paths and Circuits Sanjay Jain, Lecturer, School of Computing.
Graph-02.
 期中测验时间:本周五上午 9 : 40  教师 TA 答疑时间 : 周三晚上 6 : 00—8 : 30  地点:软件楼 315 房间,  教师 TA :李弋老师  开卷考试.
Introduction to Graphs
1 Lecture 5 (part 2) Graphs II Euler and Hamiltonian Path / Circuit Reading: Epp Chp 11.2, 11.3.
Section 14.1 Intro to Graph Theory. Beginnings of Graph Theory Euler’s Konigsberg Bridge Problem (18 th c.)  Can one walk through town and cross all.
Section 2.1 Euler Cycles Vocabulary CYCLE – a sequence of consecutively linked edges (x 1,x2),(x2,x3),…,(x n-1,x n ) whose starting vertex is the ending.
What is the first line of the proof? a). Assume G has an Eulerian circuit. b). Assume every vertex has even degree. c). Let v be any vertex in G. d). Let.
Discrete Structures Chapter 7B Graphs Nurul Amelina Nasharuddin Multimedia Department.
Is the following graph Hamiltonian- connected from vertex v? a). Yes b). No c). I have absolutely no idea v.
CTIS 154 Discrete Mathematics II1 8.2 Paths and Cycles Kadir A. Peker.
1 Section 8.4 Connectivity. 2 Paths In an undirected graph, a path of length n from u to v, where n is a positive integer, is a sequence of edges e 1,
4/17/2017 Section 8.5 Euler & Hamilton Paths ch8.5.
MATH 310, FALL 2003 (Combinatorial Problem Solving) Lecture 5,Wednesday, September 10.
MCA 520: Graph Theory Instructor Neelima Gupta
1/22/03Tucker, Applied Combinatorics, Section EDGE COUNTING TUCKER, APPLIED COMBINATORICS, SECTION 1.3, GROUP B Michael Duquette & Amanda Dargie.
9.2 Graph Terminology and Special Types Graphs
GRAPH Learning Outcomes Students should be able to:
 期中测验时间:  11 月 4 日  课件 集合,关系,函数,基数, 组合数学.  Ⅰ Introduction to Set Theory  1. Sets and Subsets  Representation of set:  Listing elements, Set builder.
Euler and Hamilton Paths. Euler Paths and Circuits The Seven bridges of Königsberg a b c d A B C D.
CSNB143 – Discrete Structure Topic 9 – Graph. Learning Outcomes Student should be able to identify graphs and its components. Students should know how.
Graphs.  Definition A simple graph G= (V, E) consists of vertices, V, a nonempty set of vertices, and E, a set of unordered pairs of distinct elements.
5.4 Graph Models (part I – simple graphs). Graph is the tool for describing real-life situation. The process of using mathematical concept to solve real-life.
Fall 2015 COMP 2300 Discrete Structures for Computation Donghyun (David) Kim Department of Mathematics and Physics North Carolina Central University 1.
September1999 CMSC 203 / 0201 Fall 2002 Week #13 – 18/20/22 November 2002 Prof. Marie desJardins.
Chapter 5 Graphs  the puzzle of the seven bridge in the Königsberg,  on the Pregel.
Introduction to Graph Theory
5.8 Graph Matching  Example: Set of worker assign to a set of task  Four tasks are to be assigned to four workers.  – Worker 1 is qualified to do tasks.
Lecture 10: Graph-Path-Circuit
Chap. 11 Graph Theory and Applications 1. Directed Graph 2.
Vertex-Edge Graphs Euler Paths Euler Circuits. The Seven Bridges of Konigsberg.
Graph theory and networks. Basic definitions  A graph consists of points called vertices (or nodes) and lines called edges (or arcs). Each edge joins.
1.Quiz 5 due tomorrow afternoon in E309 from 1pm to 4pm. 2.Homework grades will be based on ten graded homework assignments (dropping the lowest one).
MAT 2720 Discrete Mathematics Section 8.2 Paths and Cycles
Lecture 52 Section 11.2 Wed, Apr 26, 2006
Chapter 6: Graphs 6.1 Euler Circuits
 Quotient graph  Definition 13: Suppose G(V,E) is a graph and R is a equivalence relation on the set V. We construct the quotient graph G R in the follow.
Review Euler Graph Theory: DEFINITION: A NETWORK IS A FIGURE MADE UP OF POINTS (VERTICES) CONNECTED BY NON-INTERSECTING CURVES (ARCS). DEFINITION: A VERTEX.
Chapter 11 - Graph CSNB 143 Discrete Mathematical Structures.
1) Find and label the degree of each vertex in the graph.
 Hamilton paths.  Definition 20: A Hamilton paths is a path that contains each vertex exactly once. A Hamilton circuit is a circuit that contains.
Chap 7 Graph Def 1: Simple graph G=(V,E) V : nonempty set of vertices E : set of unordered pairs of distinct elements of V called edges Def 2: Multigraph.
1. 期中测验时间和地点: 11 月 4 日, 上午 9:40—11 : 40 地点: 教室 2. 答疑时间和地点: 1)11 月 1 日 ( 周五 )13:00—15:00 软件楼 319 2)11 月 2 日和 3 日, 14:00—17:00 软件楼 3 楼 机房讨论室.
1 GRAPH Learning Outcomes Students should be able to: Explain basic terminology of a graph Identify Euler and Hamiltonian cycle Represent graphs using.
9.5 Euler and Hamilton graphs. 9.5: Euler and Hamilton paths Konigsberg problem.
1 Lecture 5 (part 2) Graphs II (a) Circuits; (b) Representation Reading: Epp Chp 11.2, 11.3
An Introduction to Graph Theory
Euler and Hamiltonian Graphs
Graphs Hubert Chan (Chapter 9) [O1 Abstract Concepts]
Euler Paths and Circuits
Konigsberg’s Seven Bridges
Discrete Structures – CNS2300
Discrete Math: Hamilton Circuits
Can you draw this picture without lifting up your pen/pencil?
Introduction to Graph Theory Euler and Hamilton Paths and Circuits
G-v, or G-{v} When we remove a vertex v from a graph, we must remove all edges incident with the vertex v. When a edge is removed from a graph, without.
Graph Theory What is a graph?.
Discrete Mathematics Lecture 13_14: Graph Theory and Tree
ⅠIntroduction to Set Theory 1. Sets and Subsets
Euler and Hamilton Paths
Chapter 5 Graphs the puzzle of the seven bridge in the Königsberg,
Applied Combinatorics, 4th Ed. Alan Tucker
Warm Up – 3/19 - Wednesday Give the vertex set. Give the edge set.
Presentation transcript:

 周二下午 1 : 30—4 : 15 在软件楼 4 楼密码与信 息安全实验室答疑  周三下午 1 : 15 到 3 : 15 期中测验

 Bipartite graph  Definition18: A simple graph is called bipartite if its vertex set V can be partioned into two disjoint sets V 1 and V 2 such that every edge in the graph connects a vertex in V 1 and a vertex in V 2. (so that no edge in G connects either two vertices in V 1 or two vertices in V 2 ).The symbol K m,n denotes a complete bipartite graph: V 1 has m vertices and contains all edges joining vertices in V 2, and V 2 has n vertices and contains all edges joining vertices in V 1.  K 3,3, K 2,3 。 V 1 ={x 1,x 2,x 3, x 4 }, V 2 ={y 1, y 2, y 3, y 4, y 5 }, or V' 1 ={x 1,x 2,x 3, y 4, y 5 }, V' 2 ={y 1, y 2, y 3, x 4 },

 The graph is not bipartite  Theorem 5.5:A graph is bipartite iff it does not contain any odd simple circuit.  Proof:(1)Let G be bipartite, we prove it does not contain any odd simple circuit.  Let C=(v 0,v 1,…,v m,v 0 ) be an simple circuit of G

 (2)G does not contain any odd simple circuit, we prove G is bipartite  Since a graph is bipartite iff each component of it is, we may assume that G is connected.  Pick a vertex u  V,and put V 1 ={x|l(u,x) is even simple path},and V 2 ={y|l(u,y) is odd simple path}  1)We prove V(G)=V 1 ∪ V 2, V 1 ∩V 2 =   Let v  V 1 ∩V 2,  there is an odd simple circuit in G such that these edges of the simple circuit  p 1 ∪ p 2  each edge joins a vertex of V 1 to a vertex of V 2

 2) we prove that each edge of G joins a vertex of V 1 and a vertex V 2  If it has a edge joins two vertices y 1 and y 2 of V 2  odd simple path  (u=u 0,u 1,u 2, ,u 2n,y 1,y 2 ),even path  y 2  u i (0  i  2n)  There is u j so that y 2 =u j. The path (u,u 1,u 2, ,u j-1, y 2,u j+1, ,u 2n,y 1,y 2 ) from u to y 2,  Simple path (u,u 1,u 2, ,u j-1,y 2 ),simple circuit (y 2,u j+1, ,u 2n,y 1,y 2 )  j is odd number  j is even number

5.3Euler and Hamilton paths  Euler paths  Definition 19: A path in a graph G is called an Euler path if it includes every edge exactly once. An Euler circuit is an Euler path that is a circuit  Theorem 5.6: A connected multigraph has an Euler circuit if and only if each of its vertices has even degree.

 Proof:(1)Let connected multigraph G have an Euler circuit, then each of its vertices has even degree.  (v 0,v 1,…,v i, …,v k ),v 0 =v k  First note that an Euler circuit begins with a vertex v 0 and continues with an edge incident to v 0, say {v 0,v 1 }. The edge {v 0,v 1 } contributes one to d(v 0 ).  Thus each of G’s vertices has even degree.

 (2)Suppose that G is a connected multigraph and the degree of every vertex of G is even.  Let us apply induction on the number of edges of G  1)e=1,loop The graph is an Euler circuit. The result holds 2) Suppose that result holds for e  m e=m+1 ,  (G)≥2. By the theorem 5.4, there is a simple circuit C in the graph G

 If E(G)=E(C), the result holds  If E(G)-E(C) , Let H=G-C, The degree of every vertex of H is even and e(H)  m  ① If H is connected, by the inductive hypothesis, H has an Euler circuit C 1 ,  C=(v 0, v 1,…,v k-1, v 0 )  ② When H is not connected, H has l components, The degree of every vertex of components is even and the number of edges less than m. By the inductive hypothesis,each of components has an Euler circuit. H i  G is connected

the puzzle of the seven bridge in the Königsberg d(A)=3. The graph is no Euler circuit. Theorem 5.7: A connected multigraph has an Euler path but not an circuit if and only if it has exactly two vertices of odd degree. d(A)=d(D)=d(C)=3, d(D)=5 The graph is no Euler path.

 d(A)=d(B)=d(E)=4, d(C)=d(D)=3,  Euler path:C,B,A,C,E,A,D,B,E,D

 Hamilton paths

 Definition 20: A Hamilton paths is a path that contains each vertex exactly once. A Hamilton circuit is a circuit that contains each vertex exactly once except for the first vertex, which is also the last.

 Exercise P302 1,2,3,5,6  P306 3,4,5,6,18  周二下午 1 : 30—4 : 15 在软件楼 4 楼密码与信 息安全实验室答疑  周三下午 1 : 15 到 3 : 15 期中测验  Next: Hamiltonian paths and circuits, P  Shortest-path problem