Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 1 Status of He-cooled Divertor Design Contributors: A.R. Raffray, and The.

Slides:



Advertisements
Similar presentations
Further Modifications to the ARIES T-tube Divertor Concept Jeremy Burke ARIES-Pathways Project Meeting Jan 26,
Advertisements

First Wall Heat Loads Mike Ulrickson November 15, 2014.
April 23-24, 2009/ARR 1 Proposed Effort Over the Next 1-2 Years on ARIES-DB DCLL A. René Raffray, Siegfried Malang, Xueren Wang University of California,
CFD and Thermal Stress Analysis of Helium-Cooled Divertor Concepts Presented by: X.R. Wang Contributors: R. Raffray and S. Malang University of California,
High Performance Divertor Target Plate, a Combination of Plate and Finger Concepts S. Malang, X.R. Wang ARIES-Pathway Meeting Georgia Institute of Technology,
Page 1 of 15 Tungsten Structures for High Heat Flux Components: Opportunities & Challenges M. S. Tillack and the ARIES Team Japan-US Workshop on Fusion.
U PDATES ON D ESIGN AND A NALYSES OF THE P LATE -T YPE D IVERTOR X.R. Wang 1, S. Malang 2, M. S. Tillack 1 1 University of California, San Diego, CA 2.
D ESIGN I MPROVEMENTS OF THE W-B ASED D IVERTOR C ONCEPTS X.R. Wang 1, S. Malang 2, M. S. Tillack 1, J. Burke 1 University of California, San Diego, CA.
Page 1 of 14 External Transition Joints for Tungsten Divertors D. Navaei, X. R. Wang, M. S. Tillack and the ARIES Team Japan-US Workshop on Fusion Power.
October 16-19, 2000 A. R. Raffray, et al., ARIES-AT Blanket and Divertor, ANS Top. Meet. On TOFE ARIES-AT Blanket and Divertor A. R. Raffray 1,
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Japan-US FPP-Workshop with EU participation, January 11-13, 2005, Tokyo EU PPCS Models C&D P.
September 15-16, 2005/ARR 1 Status of ARIES-CS Power Core and Divertor Design and Structural Analysis A. René Raffray University of California, San Diego.
First Wall Thermal Hydraulics Analysis El-Sayed Mogahed Fusion Technology Institute The University of Wisconsin With input from S. Malang, M. Sawan, I.
June 14-15, 2005/ARR 1 Status of ARIES-CS Power Core Engineering A. René Raffray University of California, San Diego ARIES Meeting UW June 14-15, 2005.
June 14-15, 2006/ARR 1 ARIES-CS Power Core Engineering: Updating Power Flow, Blanket and Divertor Parameters for New Reference Case (R = 7.75 m, P fusion.
Status of the Modular and Field- Period Replacement Maintenance Presented by X.R. Wang Contributors: S. Malang, A.R. Raffray and L. El-Guebaly ARIES Meeting.
Optimization of Stellarator Power Plant Parameters J. F. Lyon, Oak Ridge National Lab. for the ARIES Team Workshop on Fusion Power Plants Tokyo, January.
January 11-13, 2005/ARR 1 Ceramic Breeder Blanket Coupled with Brayton Cycle Presented by: A. R. Raffray (University of California, San Diego) With contributions.
Thermal Analysis of Helium- Cooled T-tube Divertor S. Shin, S. I. Abdel-Khalik, and M. Yoda ARIES Meeting, Madison (June 14-15, 2005) G. W. Woodruff School.
August 17, 2000 ARIES: Fusion Power Core and Power Cycle Engineering/ARR 1 ARIES: Fusion Power Core and Power Cycle Engineering The ARIES Team Presented.
Status of the Power Core Configuration Based on Modular Maintenance Presented by X.R. Wang Contributors: S. Malang, A.R. Raffray and the ARIES Team ARIES.
Experimental Verification of Gas- Cooled T-Tube Divertor Performance L. Crosatti, D. Sadowski, S. Abdel-Khalik, and M. Yoda ARIES Meeting, UCSD (June 14-15,
November 4-5, 2004/ARR 1 ARIES-CS Power Core Options for Phase II and Focus of Engineering Effort A. René Raffray University of California, San Diego ARIES.
April 27-28, 2006/ARR 1 Support and Possible In-Situ Alignment of ARIES-CS Divertor Target Plates Presented by A. René Raffray University of California,
February 24-25, 2005/ARR 1 ARIES-CS Power Core Engineering: Status and Next Steps A. René Raffray University of California, San Diego ARIES Meeting GA.
Maintenance Schemes For ARIES-CS X.R. Wang a S. Malang b A.R. Raffray a and the ARIES Team a University of California, San Diego, 9500 Gilman Drive, La.
Ceramic Breeder Blanket Conceptual Design for ARIES-CS Contributors: S. Malang, A.R. Raffray, and L. El-Guebaly ARIES Meeting University of Wisconsin,
Scoping Study of He-cooled Porous Media for ARIES-CS Divertor Presented by John Pulsifer Major contributor: René Raffray University of California, San.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, and J. D. Rader G. W. Woodruff School of Mechanical Engineering Parametric Design Curves for.
June19-21, 2000Finalizing the ARIES-AT Blanket and Divertor Designs, ARIES Project Meeting/ARR ARIES-AT Blanket and Divertor Design (The Final Stretch)
Status of the ARIES-CS Power Core Configuration and Maintenance Presented by X.R. Wang Contributors: S. Malang, A.R. Raffray ARIES Meeting PPPL, NJ Sept.
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft 02/24/2005 T. Ihli PL FUSION FZK - EURATOM ASSOCIATION 1 He-cooled Divertor Development in the.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski and M. D. Hageman Woodruff School of Mechanical Engineering Extrapolating Experimental Results for Model Divertor.
March 20-21, 2000ARIES-AT Blanket and Divertor Design, ARIES Project Meeting/ARR Status ARIES-AT Blanket and Divertor Design The ARIES Team Presented.
Maintenance Schemes for a DEMO Power Plant and related DCLL Designs Siegfried Malang 2 nd EU-US DCLL Workshop2 nd EU-US DCLL Workshop University of California,University.
Fracture and Creep in the All-Tungsten ARIES Divertor
Neutrino Factory Mercury Vessel: Initial Cooling Calculations V. Graves Target Studies Nov 15, 2012.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski and M. D. Hageman Woodruff School of Mechanical Engineering Update on Thermal Performance of the Gas- Cooled.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, and J. D. Rader G. W. Woodruff School of Mechanical Engineering Updated Thermal Performance of.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, M. D. Hageman, B. H. Mills, and J. D. Rader G. W. Woodruff School of Mechanical Engineering Extrapolating.
October 27-28, 2004 HAPL meeting, PPPL 1 Thermal-Hydraulic Analysis of Ceramic Breeder Blanket and Plan for Future Effort A. René Raffray UCSD With contributions.
November 16, 2001 C. Newsom BTeV Pixel Modeling, Prototyping and Testing C. Newsom University of Iowa.
1 Solid Breeder Blanket Design Concepts for HAPL Igor. N. Sviatoslavsky Fusion Technology Institute, University of Wisconsin, Madison, WI With contributions.
Engineering Overview of ARIES-ACT1 M. S. Tillack, X. R. Wang and the ARIES Team Japan/US Workshop on Power Plant Studies and Advanced Technologies
Neutronics Analysis for K-DEMO Blanket Module with Helium coolant June 26, 2013 Presented by Kihak IM Prepared by Y.S. Lee Fusion Engineering Center DEMO.
M. Yoda, S. I. Abdel-Khalik, D. L. Sadowski, B. H. Mills, and J. D. Rader G. W. Woodruff School of Mechanical Engineering Correlations for the Plate Divertor.
U PDATED ARIES-ACT P OWER C ORE D EFINITION AND S I C B LANKET X.R. Wang, M. S. Tillack, S. Malang F. Najmabadi and L.A. El-Guebaly ARIES-Pathways Project.
1 Neutronics Assessment of Self-Cooled Li Blanket Concept Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI With contributions.
1 Neutronics Parameters for the Reference HAPL Chamber Mohamed Sawan Fusion Technology Institute University of Wisconsin, Madison, WI With contributions.
Page 1 of 15 Robust High-Performance First Wall Design and Analysis X. R. Wang, S. Malang, M. S. Tillack and the ARIES Team Japan-US Workshop on Fusion.
R EFINEMENT OF THE P OWER C ORE C ONFIGURATION OF THE ARIES-ACT SA X.R. Wang 1, M. S. Tillack 1, S. Malang 2 and F. Najmabadi 1 1 University of California,
P LATE -T YPE D IVERTOR 3D P RINTING X.R. Wang D. Navaei ARIES-Pathways Project Meeting Gaithersburg, MD May 31-June 1, 2012.
Helium-Cooled Divertor Options and Analysis
Update on ARIES ACT2 Power Core Design and Engineering X. R. Wang, M. S. Tillack, C. Koehly ARIES Project Meeting 18 September2013 ARIES UC San Diego UW.
Page 1 of 17 Evaluation of high heat flux components under normal and off-normal conditions M. S. Tillack with contributions from X. Wang, A. R. Raffray,
DCLL ½ port Test Blanket Module thermal-hydraulic analysis Presented by P. Calderoni March 3, 2004 UCLA.
1 A Self-Cooled Lithium Blanket Concept for HAPL I. N. Sviatoslavsky Fusion Technology Institute, University of Wisconsin, Madison, WI With contributions.
Page 1 of 19 Design Improvements and Analysis to Push the Heat Flux Limits of Divertors M. S. Tillack, X. R. Wang, J A. Burke and the ARIES Team Japan-US.
ARIES ACT1 Power Core Engineering M. S. Tillack, X. R. Wang, F. Najmabadi, S. Malang and the ARIES Team ANS 20 th Topical Meeting on the Technology of.
Chopper Beam Dump Thermal Problem 10/27/20101PX Linac FE Technical Discussions.
DCLL TBM Reference Design
X.R. Wang, M. S. Tillack, S. Malang, F. Najmabadi and the ARIES Team
Integrated Design: APEX-Solid Wall FW-Blanket
DCLL Blanket Analysis and Power Core Layout for ARIES-DB
He-cooled Divertor Design Approach
Modified Design of Aries T-Tube Divertor Concept
Status of ARIES-CS Power Core Engineering
ARIES-CS Power Core Engineering: Status and Next Steps
University of California, San Diego
Advanced Manufacturing: What is this going to do for us in Fusion?
Presentation transcript:

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 1 Status of He-cooled Divertor Design Contributors: A.R. Raffray, and The ARIES Team ARIES Meeting University of Wisconsin, Madison June 14-15, 2005 Presented by Thomas Ihli * * Forschungszentrum Karlsruhe, currently exchange visitor to UCSD & The ARIES Team

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 2 Basic divertor concept T-Tubes in parallel + simplified manifold possible (more space) + reduced number of single parts Caps in parallel target main structure: ODS ferritic steel heat exchange part: tungsten alloy + single parts can be tested before assembly

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 3 Cooling concept jet array 1300°C armor cap cartridge Multijet Slot Jet + larger cooling area  lower averaged heat transfer coefficient sufficient

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 4 Refined Design Caps less curved  reduced tube-tube distance Reinforcement + improved assembly of tube and connector Total unit length: 90 mm for 10 MW/m 2  better flow uniformity  stronger parts  small deformation 25 mm 85 mm D = 15 mm

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 5 Parts of T-Tube Design Tube (W-Alloy) Cartridge (Densimet 18) Cap (W-Alloy) Armor Layer (W) T-connector (W-Alloy) Transition piece (Slices from W to Steel)

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 6 Stress Intensities for basic geometry acceptable total stress at flow channels maximum of stress intensities (~ 360 MPa) within design limits

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 7 Shielding asymmetric heat load tor. rad. 12 MW/m 2 0 MW/m 2

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 8 Heat load on caps (by radiation) Temperature peak (for more than 50 % load on tube ends) stress intensities at tube end o.k. Heat load at tube end 100% Heat load at tube end 50%

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 9 Heat transfer coefficient Influence of slot width q’ =20 MW/m 2 G/A = 48 kg/m 2 dp = 0.28 MPa d =7.5 mm s = 0.25 mm q’ =10 MW/m 2 G/A = 24 kg/m 2 dp = 0.11 MPa d = 15 mm s = 0.5 mm q’ =5 MW/m 2 G/A = 12 kg/m 2 dp = MPa d =30 mm s = 0.8 mm

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 10 Adjustment to various loads by scaling q’ =10 MW/m 2 G/A = 24 kg/m 2 dp = 0.11 MPa d = 15 mm s = 0.5 mm d,b,l ~ 1/q’ G/A ~ q’ P/Q’~ q’ 2 stress Intensities ~ const.

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 11 W – Fe transition Tungsten W-Fe Gradient Steel anchor W-FE gradient transition: Slices for stepwise adjusting of thermal expansion, Brazed and/or HIPped

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 12 Schematic Divertor Module Design T-Tubes (W) Module body (Steel) pol. rad. 600°C 700°C tor. rad. wall cooling manifold section Collector

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 13 Divertor Module Design T-Tubes (W) Module body (Steel) tor. pol. rad.

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 14 Divertor Integration: Divertor Target Blanket Module rad. pol. Independent Blanket/Divertor (if remaining breeding zone is still sufficient) A1) Divertor Manifold box below Blanket module +Access to blanket pipes from below  same cutting/welding scheme for divertor +Simple shape for blanket -Large cooled divertor manifold necessary -reduced breeding zone - divertor has to be disassembled from blanket HT Shield with cut-outs for front access maintenance X. Wang

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 15 Divertor Integration Divertor Target Blanket Module rad. pol. tor. Independent Blanket/Divertor (if remaining breeding zone still sufficient) A2) Divertor Manifold fits into cut-out in Blanket module + Divertor may be removed with Blanket +Access to blanket pipes from below +Smaller divertor manifold - Very complicated shape for blanket - Cooled divertor manifold necessary -Reduced shielding in manifold/tube area HT Shield with cut-outs for front access maintenance

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 16 Divertor Integration Options Divertor Target Blanket Module rad. tor. pol. OPTION B: Divertor Manifold fits into cut-out in Blanket module +Independent Blanket/Divertor +Less neutron heating for divertor manifold -Complicated shape for blanket - Access of blanket pipes limited (tor.) - Divertor cannot be removed without the Blanket HT Shield with cut-outs for front access maintenance

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 17 Divertor Integration Options Divertor Target Blanket Module rad. tor. pol. OPTION C: Divertor Manifold in Blanket box +Lower neutron heating for divertor manifold +No additional cooling for divertor manifold +Thin manifold as included in blanket box +Uncomplicated shape for blanket +Better shielding than option A & B +Access to blanket pipes from below - Fix point at blanket back side - Divertor part of blanket Slots between divertor channels at blanket box passage  stress ok.

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 18 TOKAMAK Outboard target: cooling zones Outboard divertor power load 685 MW 58 % neutron power 42 % surface power max. 80 % of surface power on outboard  230 MW < 4 MW/m² < 2.5 MW/m² ≤ 10 MW/m² L = 864 mm L = 660 mm L = 800 mm

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli OB 600°C 644°C 673°C 687°C 700°C LAYOUT EXAMPLE TOKAMAK: thermo-hydraulic layout ΔT = 100 K

Forschungszentrum Karlsruhe FZK - EURATOM ASSOCIATION 05/14/2005 Thomas Ihli 20 SUMMARY Divertor Design Concept for ARIES CS has been developed New T-tube heat exchanger design New manifold concept for rel. high neutron load (vol. heating) Slot based jet impingement adapted Good therohydraulic performance (Said & Regina FZK) Thermal stress within design limits for 10 MW/m 2 Different Integration concepts can be chosen Detailed target layout possible, when distribution data available