Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High.

Slides:



Advertisements
Similar presentations
Particle rate in M1 and M2 Muon Meeting
Advertisements

Collection Of Plots for A Testbeam Paper. List of Possible Plots R/Phi resolution, charge sharing, noise etc. Noise performance and few Landau distributions.
Ion Beam Analysis techniques:
E/π identification and position resolution of high granularity single sided TRD prototype M. Târzilă, V. Aprodu, D. Bartoş, A. Bercuci, V. Cătănescu, F.
November 7th 2002Jim Libby (CERN/SLAC)1 Opposite Polarity Signals in Wide Pitch Sensors Jim Libby (CERN/SLAC) Introduction to the R&D in LHCb The test-beam.
May 14, 2015Pavel Řezníček, IPNP Charles University, Prague1 Tests of ATLAS strip detector modules: beam, source, G4 simulations.
LI Gain Curves Peter Litchfield Calibration Workshop, 6 th September 2005  Beginning to understand the LI system  Beginning to understand the software.
Alignment study 19/May/2010 (S. Haino). Summary on Alignment review Inner layers are expected to be kept “almost” aligned when AMS arrives at ISS Small.
Standalone VeloPix Simulation Jianchun Wang 4/30/10.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Performance of AMS-02 on the International Space Station DESY Theory Workshop, Hamburg Melanie Heil Supported by the Carl-Zeiss Foundation.
GLAST LAT Project Calibration & Analysis Meeting - August 29, 2005 Benoît Lott Gamma-ray Large Area Space Telescope Response of the GLAST LAT Calorimeter.
Ionization. Measuring Ions A beam of charged particles will ionize gas. –Particle energy E –Chamber area A An applied field will cause ions and electrons.
Third International Conference on Frontier Science Villa Mondragone – Monteporzio Catone Physics and Astrophysics in Space June 14, 2004 Mercedes Paniccia.
Patrick Spradlin, SCIPP trip to LLU, May 2, 2001 Detector Characteristics.
Alberto Oliva INFN/University of Perugia Tracker meeting 24/10/2006 Beam test 2003Beam test 2003 Goal: charge discrimination algorithm with high efficiency.
The Time-of-Flight system of the PAMELA experiment: in-flight performances. Rita Carbone INFN and University of Napoli RICAP ’07, Rome,
RF background, analysis of MTA data & implications for MICE Rikard Sandström, Geneva University MICE Collaboration Meeting – Analysis session, October.
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
SPiDeR  First beam test results of the FORTIS sensor FORTIS 4T MAPS Deep PWell Testbeam results CHERWELL Summary J.J. Velthuis.
Semiconductor detectors
The Transverse detector is made of an array of 256 scintillating fibers coupled to Avalanche PhotoDiodes (APD). The small size of the fibers (5X5mm) results.
Performance test of STS demonstrators Anton Lymanets 15 th CBM collaboration meeting, April 12 th, 2010.
Progress of HERD Simulation Ming XU ( 徐明 ), IHEP HERD 2 nd Workshop, IHEP, Beijing 1.
March 13thXXXXth RENCONTRES DE MORIOND 1 The Alpha Magnetic Spectrometer on the International Space Station Carmen Palomares CIEMAT (Madrid) On behalf.
Silicon Sensors for Collider Physics from Physics Requirements to Vertex Tracking Detectors Marco Battaglia Lawrence Berkeley National Laboratory, University.
Design and development of micro-strip stacked module prototypes for tracking at S-LHC Motivations Tracking detectors at future hadron colliders will operate.
8 July 1999A. Peisert, N. Zamiatin1 Silicon Detectors Status Anna Peisert, Cern Nikolai Zamiatin, JINR Plan Design R&D results Specifications Status of.
1 Behaviour of the Silicon Strip Detector modules for the Alice experiment: simulation and test with minimum ionizing particles Federica Benedosso Utrecht,
Tracking, PID and primary vertex reconstruction in the ITS Elisabetta Crescio-INFN Torino.
Observation of light nuclei with PAMELA Roberta Sparvoli Laura Marcelli, Valeria Malvezzi, Cristian De Santis and the PAMELA Collaboration.
ICPPA-2015 Moscow Oct ASIC for calorimetric measurements in astrophysical experiment NUCLEON (overview) E. Atkin1, A. Voronin1,2, D. Karmanov2,
Studying the efficiency and the space resolution of resistive strips MicroMegas Marco Villa – CERN MAMMA meeting Tuesday, 13 th December 2011 CERN, Geneva.
H, He, Li and Be Isotopes in the PAMELA-Experiment Wolfgang Menn University of Siegen On behalf of the PAMELA collaboration International Conference on.
Jyly 8, 2009, 3rd open meeting of Belle II collaboration, KEK1 Charles University Prague Zdeněk Doležal for the DEPFET beam test group 3rd Open Meeting.
 The zigzag readout board is divided into eight η-sectors; each sector has a length of ~12 cm and comprises 128 zigzag strips; zigzag strips run in radial.
Jonathan BouchetBerkeley School on Collective Dynamics 1 Performance of the Silicon Strip Detector of the STAR Experiment Jonathan Bouchet Subatech STAR.
Particle Identification. Particle identification: an important task for nuclear and particle physics Usually it requires the combination of informations.
The DAMPE STK G. Ambrosi INFN Perugia. The DAMPE Detector Mass: 1480 Kg Power: 600 W Data: 16 Gbyte/day Liftime: 5 years 2.
Reconstructing energy from HERD beam test data Zheng QUAN IHEP 3 rd HERD work shop Xi’an, 20 Jan
FIRST RESULTS OF THE SILICON STRIP DETECTOR at STAR Jörg Reinnarth, Jonathan Bouchet, Lilian Martin, Jerome Baudot and the SSD teams in Nantes and Strasbourg.
Calice Meeting Argonne Muon identification with the hadron calorimeter Nicola D’Ascenzo.
Lucia Bortko | Optimisation Studies for the BeamCal Design | | IFJ PAN Krakow | Page 1/16 Optimisation Studies for the BeamCal Design Lucia.
ATLAS Transition Radiation Tracker End-cap Quality Control and the Characterization of Straw Deformations Michael Kagan University of Michigan Supervisor:
P.F.Ermolov SVD-2 status and experimental program VHMP 16 April 2005 SVD-2 status and experimental program 1.SVD history 2.SVD-2 setup 3.Experiment characteristics.
Irradiated 3D sensor testbeam results Alex Krzywda On behalf of CMS 3D collaboration Purdue University March 15, 2012.
Testbeam analysis Lesya Shchutska. 2 beam telescope ECAL trigger  Prototype: short bars (3×7.35×114 mm 3 ), W absorber, 21 layer, 18 X 0  Readout: Signal.
Rita Carbone, RICAP 11, Roma 3 26/05/2011 Stand-alone low energy measurements of light nuclei from PAMELA Time-of-Flight system. Rita Carbone INFN Napoli.
1 Cosmic Ray Physics with IceTop and IceCube Serap Tilav University of Delaware for The IceCube Collaboration ISVHECRI2010 June 28 - July 2, 2010 Fermilab.
Particle Identification of the ALICE TPC via dE/dx
0 Characterization studies of the detector modules for the CBM Silicon Tracking System J.Heuser 1, V.Kyva 2, H.Malygina 2,3, I.Panasenko 2 V.Pugatch 2,
Analysis of LumiCal data from the 2010 testbeam
Idee per lo sviluppo del Charge Identifier
Wide Dynamic range readout preamplifier for Silicon Strip Sensor
The Silicon Drift Detector of the ALICE Experiment
CALICE scintillator HCAL
Panagiotis Kokkas Univ. of Ioannina
Detection of muons at 150 GeV/c with a CMS Preshower Prototype
Integration and alignment of ATLAS SCT
Cosmic-Rays Astrophysics with AMS-02
The magnetic spectrometer of PAMELA
Cosmic-Ray Lithium and Beryllium Isotopes in the PAMELA-Experiment
Measurements of Cosmic-Ray Lithium and Beryllium Isotopes
5% The CMS all silicon tracker simulation
Gamma-ray Large Area Space Telescope
Charge measurement of STK
p0 life time analysis: general method, updates and preliminary result
A. Menegolli, University of Pavia and INFN Pavia
Studies of the Time over Threshold
The magnetic spectrometer of PAMELA
Presentation transcript:

Page 1 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ion charge measurement with the AMS-02 silicon tracker 1rst Int. Workshop on High Energy cosmic-Radiation Detection October 17-18, 2012 IHEP CAS, Beijing Martin Pohl, Pierre Saouter Center for Astroparticle Physics University of Geneva Alberto Oliva CIEMAT Madrid

Page 2 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Si Tracker Charge Measurement Strip crosstalk Gain (at VA level, using H, He and C) Charge loss (position/angle dependence) MIP scale conversion (saturation, non-linearities) From ADC to energy deposition Detector related corrections From energy deposition to floating point charge estimators (Q) From floating point charge estimator to integer charge (Z) Pathlength correction Beta/Rigidity correction (layer dependent) PDF Z (E dep ) Likelihood

Page 3 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Si Tracker Charge Measurement Physics: Physics: From physics to ADC: From physics to ADC: Si material properties Si material properties Nuclear charge:z 2 Nuclear charge:z 2 β and βγ:eV/μm β and βγ:eV/μm Path length in Si:dx Path length in Si:dx Ionisation yield: eV  fC Ionisation yield: eV  fC Charge collection efficiency on strips Charge collection efficiency on strips ASIC response function ASIC response function Channel cross talk: ADC Channel cross talk: ADC

Page 4 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE The AMS Silicon Tracker  9 planes: 18 to 26 ladders  Ladder : 7 to 15 double-sided silicon sensors.  Implantation pitch p(n) side 27.5 (104) μm  Readout pitch p(n) side 110 (208) μm (1/4 and 1/2 strips read out) Ionization Energy Loss Signal usually collected by several adjacent strips (cluster) Signal usually collected by several adjacent strips (cluster) Double threshold to eliminate insignificant strips Double threshold to eliminate insignificant strips Cluster Amplitude

Page 5 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE VA64hdr Front-end electronics 10 VAs on the p-side (Y direction) 6 VAs on the n-side (X direction) Each VA reads 64 channels Each VA produces a signal with different characteristics Each VA produces a signal with different characteristics In particular differences in the gain are observed In particular differences in the gain are observed FEE response curve is deliberately non-linear, different for p and n FEE response curve is deliberately non-linear, different for p and n p-side n-side

Page 6 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Example of Gain Differences for He for p-side VAs of Ladder +307 Raw ADC Typical ~10%, max ~35% x 10 Helium Sample

Page 7 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Landau function convoluted with a Gaussian Landau function convoluted with a Gaussian MPV to characterize the gain of a given VA MPV to characterize the gain of a given VA Single VA Distribution for Proton. Amplitude distribution (protons, single VA)

Page 8 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Cluster pulse integral (single ladder) as function of ion charge Alpat B. & al., 2004 (2003 Cern and GSI Test Beam) Si B 1.Two sides behave differently: Maximum dynamic rangeMaximum dynamic range Good resolution at low chargeGood resolution at low charge 2.Two ~ linear response regimes 3.Same behavior expected for all VA n side p side

Page 9 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Charge Calibration Sample Selection Uncalibrated charge response with rather good resolution Uncalibrated charge response with rather good resolution Define charge samples using truncated mean of hits on n side, corrected for impact angle Define charge samples using truncated mean of hits on n side, corrected for impact angle 1σ selection ranges around MPV 1σ selection ranges around MPV Avoid any bias in selection: separate ranges for each layer separate ranges for each layer truncated mean excluding layer under study truncated mean excluding layer under study (see later) (see later) H He Li Be B C N O

Page 10 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE X-side Clusters VA Number Proton Helium Carbon Charge Calibration Sample Selection

Page 11 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Reference MPV values for each charge ProtonProton HeliumHelium CarbonCarbon Readout Region Individual VA gains equalized on reference value

Page 12 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Good linearity of VA64 response Gain factor inde- pendent of particle impact location Gain factor inde- pendent of particle impact location Small offset due to thresholds on seed and adjacent strips Small offset due to thresholds on seed and adjacent strips Gain Corr. Fact

Page 13 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Offset must be taken into account in gain correction! Gain Correction Factors and Offsets At most 10% correction needed.

Page 14 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Deviation of VA MPV values from Linear Fit Systematic error ~ 3%

Page 15 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Gain Correction Effect on H, He and C Samples No Correction Gain Correction Including Offsets RMS improves by factor of 3.5

Page 16 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Gain Systematics Each point is mean of VA response per layer, with RMS as errorEach point is mean of VA response per layer, with RMS as error RMS is larger for layer 1RMS is larger for layer 1 Systematics less than 0.5% << statistical error on gain factorSystematics less than 0.5% << statistical error on gain factor  Layer 1  Layer 2  Layer 3  Layer 4  Layer 5  Layer 6  Layer 7  Layer 8  Layer 9

Page 17 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Number Nuclei C Be B N O F Ne Na Mg Si Li He H Before Correction After Gain Corrections Track Truncated Mean n Side

Page 18 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE C Be B N O F Ne Na Mg Si log (Number Nuclei) Before Correction After Gain Corrections Zoom on High Charges n Side

Page 19 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Resolution of Charge Estimator After Gain Correction A. Oliva n side before correction n side after gain correction

Page 20 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Number Nuclei C Be B O Ne Li He H Before Correction After Gain Corrections Track Truncated Mean p Side

Page 21 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Charge Collection Efficiency Particle very near a readout strip. Particle passes in between two readout strips. Capacitive coupling between strips allows to estimate impact position of the traversing particle (COG). Charge loss ~30 % for Helium 00 Loss of collection efficiency in the non-readout region

Page 22 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Charge Collection: Impact Point and Angle Z XZ Projected Track θ XZ X X Y Z

Page 23 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Implant structure and n/p side differences n - side: 1 out of 2 strips read out + saturation p - side: 1 out 4 strips readout + non linearity at low charges (B,C,O) different charge collection behavior Charge Loss For Carbon Sample N-Side / Z=6 / ~28% P-Side / Z=6 / ~35% ADC

Page 24 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Ne O C B Be N F No Corr Gain Corr Gain + Charge Loss Track Truncated Mean n Side

Page 25 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Resolution of Charge Estimator After Correction

Page 26 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE O C Mg Fe Si B Be Li Track Truncated Mean p Side

Page 27 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Path Length Correction Normalization to 300 μm of Silicon traversed.

Page 28 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Beta Correction: Layer-by-Layer (II) Z = 1 Z = 2 Z = 1 Layer 4 Layer 1 Effect of TRD + upper TOF Effect of TRD + upper TOF

Page 29 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Beta Correction: Layer-by-Layer (III) Z = 1 Z = 2 Z = 1 Layer 8 Layer 9 Effect of RICH + lower TOF Effect of RICH + lower TOF

Page 30 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Beta Correction Protons Helium TOF measures β inside AMS β > β TOF β TOF β < β TOF

Page 31 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Tracker Charge Measurement Z>10 should use p-side n Track Truncated Mean p–Side (c.u.) Track Truncated Mean n–Side (c.u.)

Page 32 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE MIP Correction MIP Correction Transforms corrected response into charge units. Transforms corrected response into charge units. Accounts for saturation and non-linearity Accounts for saturation and non-linearity Directly provided as an outcome of the charge loss correction Directly provided as an outcome of the charge loss correction Gives almost linear charge estimator Gives almost linear charge estimator Some residual deviation left in the non-linearity regions Some residual deviation left in the non-linearity regions n side p side

Page 33 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Combine the n and p measurement with a weighted sum.Combine the n and p measurement with a weighted sum. Weights depend on the number of hits usedWeights depend on the number of hits used Weights assumed to be independent of Z (approximately correct)Weights assumed to be independent of Z (approximately correct) H x He x Be C O Si Fe Joint Track Charge Estimator Joint Track Charge Estimator

Page 34 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Going to PDF This shapes should be understood in detail Tails from wrong hit associated to tracks, interactions… Specific ladder behavior Dependencies on external parameters: t, T … Layer 2 charge distributions

Page 35 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Z TRK_L1 =6.1 Z TRD =5.9 Z TOF_UP =5.9 Z TOF_LOW =5.8 Z TRK_IN =5.8 Z RICH =6.1 Carbon: Rigidity=215 GV, P=1288 GeV, E kin /A=106 GeV/n

Page 36 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Z TRK_L1 =4.9 Z TRD =4.5 Z TOF_UP =5.0 Z TOF_LOW =5.1 Z TRK_IN =4.9 Z RICH =5.2 Boron: Rigidity=187 GV, P=935 GeV, E kin /A=93 GeV/n

Page 37 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Tracker and ToF H He Li Be B C NO F Ne Na Mg Al Si ClAr K Ca ScTi V Cr P S Fe Ni

Page 38 Martin Pohl DEPARTEMENT DE PHYSIQUE NUCLEAIRE ET CORPUSCULAIRE Conclusions AMS Si tracker shows excellent nuclear charge identification:AMS Si tracker shows excellent nuclear charge identification: –Excellent charge separation –Simple unfolding of species Complete calibration chain in place:Complete calibration chain in place: –Floating point charge estimator –Probabilistic approach based on PDF Redundancy of subdetectors is key to systematic accuracy:Redundancy of subdetectors is key to systematic accuracy: –Tracker –ToF –RICH Chemical composition of cosmic rays GeV to TeVChemical composition of cosmic rays GeV to TeV