Chapter 14 Fluids.

Slides:



Advertisements
Similar presentations
Chapter 9 Fluids.
Advertisements

Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
14-1 What is a fluid? 1. 2 Density 3 4 Material or Object Iron Interstellar space Mercury (the metal, not the planet) Best laboratory vacuum Earth:
Chapter 11 Fluids Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit.
Phy 212: General Physics II Chapter 14: Fluids Lecture Notes.
Liquids and Gasses Matter that “Flows”
Matter 1. Density: m – mass V – volume Units:
Chapter 14 Fluid Mechanics.
Fluids Mechanics Carlos Silva December 2 nd 2009.
Chapter 9 Solids and Fluids 1. Introduction 2. Fluids at Rest 3. Fluid Motion.
Static Fluids Fluids are substances, such as liquids and gases, that have no rigidity. A fluid lacks a fixed shape and assumes the shape of its container.
Lecture 8b – States of Matter Fluid Copyright © 2009 Pearson Education, Inc.
CHAPTER-14 Fluids. Ch 14-2, 3 Fluid Density and Pressure  Fluid: a substance that can flow  Density  of a fluid having a mass m and a volume V is given.
Chapter 15 Fluids.
Chapter 14 Fluids. Fluids at Rest (Fluid = liquid or gas)
Chapter 14 Fluids Key contents Description of fluids
Chapter 9 Solids and Fluids. Solids Has definite volume Has definite volume Has definite shape Has definite shape Molecules are held in specific locations.
Fluid mechanics 3.1 – key points
Static Fluids Fluids are substances, such as liquids and gases, that have no rigidity. A fluid lacks a fixed shape and assumes the shape of its container.
Unit 3 - FLUID MECHANICS.
Chapter 14 PHYSICS 2048C Fluids. What Is a Fluid?  A fluid, in contrast to a solid, is a substance that can flow.  Fluids conform to the boundaries.
Monday, Nov. 22, 2004PHYS , Fall 2004 Dr. Jaehoon Yu 1 1.Density and Specific Gravity 2.Fluid and Pressure 3.Absolute and Relative Pressure 4.Pascal’s.
CHAPTER 15 : FLUID MECHANICS
Chapter 9 Fluid Mechanics.
Chapter 10 Fluids.
Chapter 11 Fluids. Density and Specific Gravity The density ρ of an object is its mass per unit volume: The SI unit for density is kg/m 3. Density is.
Hydrostatics: Fluids at Rest. applying Newtonian principles to fluids hydrostatics—the study of stationary fluids in which all forces are in equilibrium.
Fluid Mechanics Chapter 13 2 Fluid Anything that can flow A liquid or a gas Physics Chapter 13.
制作 张昆实 制作 张昆实 Yangtze University 制作 张昆实 制作 张昆实 Yangtze University Bilingual Mechanics Chapter 10 Fluids Fluids Chapter 10 Fluids Fluids.
Warm-up Pick up the free response at the door and begin working on it.
Chapter 9 Solids and Fluids.
© 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Chapter 15 Fluid Mechanics.
Chapter 10 Fluids. Units of Chapter 10 Phases of Matter Density Pressure in Fluids Atmospheric Pressure and Gauge Pressure Pascal’s Principle Measurement.
Chapter 9 Fluid Mechanics. Chapter Objectives Define fluid Density Buoyant force Buoyantly of floating objects Pressure Pascal's principle Pressure and.
Solids & Fluids Relating Pressure to Solid & Fluid systems 01/30.
Chapter 11 Fluids.
© 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their.
Solids and Fluids Chapter 9. Phases of Matter  Solid – definite shape and volume  Liquid – definite volume but assumes the shape of its container 
Chapter 15 Fluid Mechanics States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas –
1 Fluid Mechanics Chapter 13 2 Fluid Anything that can flow A liquid or a gas.
Chapter 14 Fluids What is a Fluid? A fluid, in contrast to a solid, is a substance that can flow. Fluids conform to the boundaries of any container.
Fluids Unlike a solid, a fluid can flow. Fluids conform to the shape of the container in which it is put. Liquids are fluids the volume of which does not.
Chapter 15FLUIDS 15.1 Fluid and the World Around Us 1.A fluid is a substance that cannot support a shearing stress. 2.Both gases and liquids are fluids.
Unit 6 : Part 1 Fluids.
Lecture Outline Chapter 9 College Physics, 7 th Edition Wilson / Buffa / Lou © 2010 Pearson Education, Inc.
Subdivisions of matter solidsliquidsgases rigidwill flowwill flow dense dense low density and incompressible and incompressible compressible fluids condensed.
Copyright © 2015 John Wiley & Sons, Inc. All rights reserved. Chapter 11 Fluids.
NAZARIN B. NORDIN What you will learn: Pascal’s law Incompressibility of fluids Pressure, force ratio Archimedes principle Density.
Wednesday, Apr. 14, 2004PHYS , Spring 2004 Dr. Jaehoon Yu 1 PHYS 1441 – Section 004 Lecture #20 Wednesday, Apr. 14, 2004 Dr. Jaehoon Yu Variation.
Fluid Mechanics Chapter 8. Fluids Ability to flow Ability to change shape Both liquids and gases Only liquids have definite volume.
Today (Chapter 10, Fluids)  Review for Exam 2 Tomorrow (Chapters 6-10)  Review Concepts from Tuesday  Continuity Equation  Bernoulli’s Equation  Applications/Examples.
Physics Chapter 9: Fluid Mechanics. Fluids  Fluids  Definition - Materials that Flow  Liquids  Definite Volume  Non-Compressible  Gasses  No Definite.
Phys 101, General Physics I. Reference Book is Fluid Mechanics A fluid is a collection of molecules that are randomly arranged and held together by weak.
Chapter 14 Lecture 28: Fluid Mechanics: I HW10 (problems):14.33, 14.41, 14.57, 14.61, 14.64, 14.77, 15.9, Due on Thursday, April 21.
Physics 2: Fluid Mechanics and Thermodynamics Đào Ngọc Hạnh Tâm Office: A1.503, HCMIU, Vietnam National University Reference:
College Physics, 7th Edition
Chapter 11 Fluids.
Fluid Mechanics Presentation on FLUID STATICS BY Group:
Chapter 14 Fluids.
Physics 21.
Halliday/Resnick/Walker Fundamentals of Physics 8th edition
Fluids Liquids and Gases Chapter 11.
Copyright © 2014 John Wiley & Sons, Inc. All rights reserved.
Chapter 7: Solid and Fluids
Physics 151: Lecture 29 Today’s Agenda
Chapter 14 Fluid Mechanics.
Chapter 14 PHYSICS 2048C Fluids.
Chapter 14 PHYSICS 2048C Fluids.
Presentation transcript:

Chapter 14 Fluids

A fluid, in contrast to a solid, is a substance that can flow. 14.2 What is a Fluid? A fluid, in contrast to a solid, is a substance that can flow. Fluids conform to the boundaries of any container in which we put them. They do so because a fluid cannot sustain a force that is tangential to its surface. That is, a fluid is a substance that flows because it cannot withstand a shearing stress. It can, however, exert a force in the direction perpendicular to its surface.)

14.3 Density and Pressure To find the density r of a fluid at any point, we isolate a small volume element V around that point and measure the mass m of the fluid contained within that element. If the fluid has uniform density, then Density is a scalar property; its SI unit is the kilogram per cubic meter. If the normal force exerted over a flat area A is uniform over that area, then the pressure is defined as: The SI unit of pressure is the newton per square meter, which is given a special name, the pascal (Pa). 1 atmosphere (atm) = 1.01x105 Pa =760 torr =14.7 lb/in.2.

14.3 Density and Pressure

14.3 Density and Pressure

Example, Atmospheric Pressure and Force

14.4: Fluids at Rest The pressure at a point in a fluid in static equilibrium depends on the depth of that point but not on any horizontal dimension of the fluid or its container. The balance of the 3 forces is written as: If p1 and p2 are the pressures on the top and the bottom surfaces of the sample, Since the mass m of the water in the cylinder is, m =rV, where the cylinder’s volume V is the product of its face area A and its height (y1 -y2), then m =rA(y1-y2). Therefore, If y1 is at the surface and y2 is at a depth h below the surface, then (where po is the pressure at the surface, and p the pressure at depth h). Fig. 14-2 Above: A tank of water in which a sample of water is contained in an imaginary cylinder of horizontal base area A. Below: A free-body diagram of the water sample.

Example:

Example:

14.5: Measuring Pressure: The Mercury Barometer A mercury barometer is a device used to measure the pressure of the atmosphere. The long glass tube is filled with mercury and the space above the mercury column contains only mercury vapor, whose pressure can be neglected. If the atmospheric pressure is p0 , and r is the density of mercury, Fig. 14-5 (a) A mercury barometer. (b) Another mercury barometer. The distance h is the same in both cases.

14.5: Measuring Pressure: The Open-Tube Manometer An open-tube manometer measures the gauge pressure pg of a gas. It consists of a U-tube containing a liquid, with one end of the tube connected to the vessel whose gauge pressure we wish to measure and the other end open to the atmosphere. If po is the atmospheric pressure, p is the pressure at level 2 as shown, and r is the density of the liquid in the tube, then

14.6: Pascal’s Principle A change in the pressure applied to an enclosed incompressible fluid is transmitted undiminished to every portion of the fluid and to the walls of its container.

14.6: Pascal’s Principle and the Hydraulic Lever The force Fi is applied on the left and the downward force Fo from the load on the right produce a change Dp in the pressure of the liquid that is given by If we move the input piston downward a distance di, the output piston moves upward a distance do, such that the same volume V of the incompressible liquid is displaced at both pistons. Then the output work is:

Fb = mf g (buoyant force), 14.7: Archimedes Principle When a body is fully or partially submerged in a fluid, a buoyant force from the surrounding fluid acts on the body. The force is directed upward and has a magnitude equal to the weight of the fluid that has been displaced by the body. The net upward force on the object is the buoyant force, Fb. The buoyant force on a body in a fluid has the magnitude Fb = mf g (buoyant force), where mf is the mass of the fluid that is displaced by the body. Fig. 14-9 A thin-walled plastic sack of water is in static equilibrium in the pool. The gravitational force on the sack must be balanced by a net upward force on it from the surrounding water.

14.7: Archimedes Principle: Floating and Apparent Weight When a body floats in a fluid, the magnitude Fb of the buoyant force on the body is equal to the magnitude Fg of the gravitational force on the body. That means, when a body floats in a fluid, the magnitude Fg of the gravitational force on the body is equal to the weight mfg of the fluid that has been displaced by the body, where mf is the mass of the fluid displaced. That is, a floating body displaces its own weight of fluid. The apparent weight of an object in a fluid is less than the actual weight of the object in vacuum, and is equal to the difference between the actual weight of a body and the buoyant force on the body.

Example, Floating, buoyancy, and density

14.8: Ideal Fluids in Motion Steady flow: In steady (or laminar) flow, the velocity of the moving fluid at any fixed point does not change with time. Incompressible flow: We assume, as for fluids at rest, that our ideal fluid is incompressible; that is, its density has a constant, uniform value. Nonviscous flow: The viscosity of a fluid is a measure of how resistive the fluid is to flow; viscosity is the fluid analog of friction between solids. An object moving through a nonviscous fluid would experience no viscous drag force—that is, no resistive force due to viscosity; it could move at constant speed through the fluid. Irrotational flow: In irrotational flow a test body suspended in the fluid will not rotate about an axis through its own center of mass.

14.9: The Equation of Continuity

14.10: Bernoulli’s Equation Fig. 14-19 Fluid flows at a steady rate through a length L of a tube, from the input end at the left to the output end at the right. From time t in (a) to time t+Dt in (b), the amount of fluid shown in purple enters the input end and the equal amount shown in green emerges from the output end. If the speed of a fluid element increases as the element travels along a horizontal streamline, the pressure of the fluid must decrease, and conversely.

14.10: Bernoulli’s Equation: Proof The change in kinetic energy of the system is the work done on the system. If the density of the fluid is r, The work done by gravitational forces is: The net work done by the fluid is: Therefore, Finally,

Example-2: Bernoulli’s Principle

Chapter 14. Problem 38.  A small solid ball is released from rest while fully submerged in a liquid and then its kinetic energy is measured when it has moved 4.0 cm in the liquid. Figure gives the results after many liquids are used: The kinetic energy K is plotted versus the liquid density ρliq, and Ks = 1.60 J sets the scale on the vertical axis. What are (a) the density and (b) the volume of the ball?

Chapter 14. Problem 42. A flotation device is in the shape of a right cylinder, with a height of 0.50 m and a face area of 4.00 m2 on top and bottom, and its density is 0.40 times that of fresh water. It is initially held fully submerged in fresh water, with its top face at the water surface. Then it is allowed to ascend gradually until it begins to float. How much work does the buoyant force do on the device during the ascent?