Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 14 Fluid Mechanics.

Similar presentations

Presentation on theme: "Chapter 14 Fluid Mechanics."— Presentation transcript:

1 Chapter 14 Fluid Mechanics

2 Fluids Fluids (Ch. 6) – substances that can flow (gases, liquids)
Fluids conform with the boundaries of any container in which they are placed Fluids lack orderly long-range arrangement of atoms and molecules they consist of Fluids can be compressible and incompressible

3 Density and pressure Density SI unit of density: kg/m3
Blaise Pascal ( ) Density and pressure Density SI unit of density: kg/m3 Pressure (cf. Ch. 12) SI unit of pressure: N/m2 = Pa (pascal) Pressure is a scalar – at a given point in a fluid the measured force is the same in all directions For a uniform force on a flat area

4 Atmospheric pressure Atmospheric pressure:
P0 = 1.00 atm = x 105 Pa

5 Fluids at rest For a fluid at rest (static equilibrium) the pressure is called hydrostatic For a horizontal-base cylindrical water sample in a container

6 Fluids at rest The hydrostatic pressure at a point in a fluid depends on the depth of that point but not on any horizontal dimension of the fluid or its container Difference between an absolute pressure and an atmospheric pressure is called the gauge pressure

7 Chapter 14 Problem 12 The tank is filled with water 2.00 m deep. At the bottom of one sidewall is a rectangular hatch 1.00 m high and 2.00 m wide that is hinged at the top of the hatch. (a) Determine the force the water causes on the hatch. (b) Find the torque caused by the water about the hinges.

8 Measuring pressure Mercury barometer Open-tube manometer

9 Pascal’s principle Pascal’s principle: A change in the pressure applied to an enclosed incompressible fluid is transmitted undiminished to every portion of the fluid and to the walls of its container Hydraulic lever With a hydraulic lever, a given force applied over a given distance can be transformed to a greater force applied over a smaller distance

10 Archimedes’ principle
of Syracuse ( BCE) Archimedes’ principle Buoyant force: For imaginary void in a fluid p at the bottom > p at the top Archimedes’ principle: when a body is submerged in a fluid, a buoyant force from the surrounding fluid acts on the body. The force is directed upward and has a magnitude equal to the weight of the fluid that has been displaced by the body

11 Archimedes’ principle
Sinking: Floating: Apparent weight: If the object is floating at the surface of a fluid, the magnitude of the buoyant force (equal to the weight of the fluid displaced by the body) is equal to the magnitude of the gravitational force on the body

12 Chapter 14 Problem 28 A spherical aluminum ball of mass 1.26 kg contains an empty spherical cavity that is concentric with the ball. The ball barely floats in water. Calculate (a) the outer radius of the ball and (b) the radius of the cavity.

13 Motion of ideal fluids Flow of an ideal fluid:
Steady (laminar) – the velocity of the moving fluid at any fixed point does not change with time (either in magnitude or direction) Incompressible – density is constant and uniform Nonviscous – the fluid experiences no drag force Irrotational – in this flow the test body will not rotate about its center of mass

14 Equation of continuity Equation of continuity
For a steady flow of an ideal fluid through a tube with varying cross-section Equation of continuity

15 Bernoulli’s equation For a steady flow of an ideal fluid:
Daniel Bernoulli ( ) Bernoulli’s equation For a steady flow of an ideal fluid: Kinetic energy Gravitational potential energy Internal (“pressure”) energy

16 Bernoulli’s equation Total energy

17 Chapter 14 Problem 49 A hypodermic syringe contains a medicine having the density of water. The barrel of the syringe has a cross-sectional area A = 2.50 × 10-5 m2, and the needle has a cross-sectional area a = 1.00 × 10-8 m2. In the absence of a force on the plunger, the pressure everywhere is 1 atm. A force F of magnitude 2.00 N acts on the plunger, making medicine squirt horizontally from the needle. Determine the speed of the medicine as it leaves the needle’s tip.

18 Questions?

19 Answers to the even-numbered problems
Chapter 14 Problem 6 (a) 1.01 × 107 Pa (b) 7.09 × 105 N outward

20 Answers to the even-numbered problems
Chapter 14 Problem 8 225 N

21 Answers to the even-numbered problems
Chapter 14 Problem 22 3.33 × 103 kg/m3

22 Answers to the even-numbered problems
Chapter 14 Problem 38 0.825 m/s (b) 3.30 m/s (c) 4.15 L/s

Download ppt "Chapter 14 Fluid Mechanics."

Similar presentations

Ads by Google