The effect of neutrinos on the initial fireballs in GRB ’ s Talk based on astro-ph/0505533 (HK and Ralph Wijers) Hylke Koers NIKHEF & University of Amsterdam.

Slides:



Advertisements
Similar presentations
Cosmological Aspects of Neutrino Physics (I) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Advertisements

Questions and Probems. Matter inside protoneutron stars Hydrostatic equilibrium in the protoneutron star: Rough estimate of the central pressure is: Note.
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
A two-zone model for the production of prompt neutrinos in gamma-ray bursts Matías M. Reynoso IFIMAR-CONICET, Mar del Plata, Argentina GRACO 2, Buenos.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
Things You should Know Gravity Light Thermodynamics Atoms Particles.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
The role of neutrinos in the evolution and dynamics of neutron stars José A. Pons University of Alicante (SPAIN)  Transparent and opaque regimes.  NS.
Low-luminosity GRBs and Relativistic shock breakouts Ehud Nakar Tel Aviv University Omer Bromberg Tsvi Piran Re’em Sari 2nd EUL Workshop on Gamma-Ray Bursts.
NISSIM ILLICH FRAIJA This work (with collaborators Sahu et al) was accepted in PRD (arXiv: )
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Spectral Energy Correlations in BATSE long GRB Guido Barbiellini and Francesco Longo University and INFN, Trieste In collaboration with A.Celotti and Z.Bosnjak.
Neutral Particles. Neutrons Neutrons are like neutral protons. –Mass is 1% larger –Interacts strongly Neutral charge complicates detection Neutron lifetime.
Potential Positron Sources around Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/11/29.
Gamma-Ray Bursts (GRBs) and collisionless shocks Ehud Nakar Krakow Oct. 6, 2008.
GLAST Science LunchDec 1, 2005 E. do Couto e Silva 1/21 Can emission at higher energies provide insight into the physics of shocks and how the GRB inner.
X-ray/Optical flares in Gamma-Ray Bursts Daming Wei ( Purple Mountain Observatory, China)
Temporal evolution of thermal emission in GRBs Based on works by Asaf Pe’er (STScI) in collaboration with Felix Ryde (Stockholm) & Ralph Wijers (Amsterdam),
Relativistic photon mediated shocks Amir Levinson Tel Aviv University With Omer Bromberg (PRL 2008)
Kick of neutron stars as a possible mechanism for gamma-ray bursts Yong-Feng Huang Department of Astronomy, Nanjing University.
Physics 777 Plasma Physics and Magnetohydrodynamics (MHD) Instructor: Gregory Fleishman Lecture 13. Astrophysical Plasmas 02 December 2008.
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
Ehud Nakar California Institute of Technology Gamma-Ray Bursts and GLAST GLAST at UCLA May 22.
The 511 keV Annihilation Emission From The Galactic Center Department of Physics National Tsing Hua University G.T. Chen 2007/1/2.
Introductory Video: The Big Bang Theory Objectives  Understand the Hubble classification scheme of galaxies and describe the structure of the Milky.
Interaction of Gamma-Rays - General Considerations uncharged transfer of energy creation of fast electrons.
NEEP 541 Radiation Interactions Fall 2003 Jake Blanchard.
SUPERNOVA NEUTRINOS AT ICARUS
Ch. 5 - Basic Definitions Specific intensity/mean intensity Flux
Neutrino reactions on two-nucleon system and core-collapse supernova
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
Amir Levinson Tel Aviv University Levinson+Bromberg PRL 08 Bromberg et al. ApJ 11 Levinson ApJ 12 Katz et al. ApJ 10 Budnik et al. ApJ 10 Nakar+Sari ApJ.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Interactions of high energy photons with matter
The acceleration and radiation in the internal shock of the gamma-ray bursts ~ Smoothing Effect on the High-Energy Cutoff by Multiple Shocks ~ Junichi.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
L EPTONIC NEUTRINOS Arunava Bhadra High Energy & Cosmic Ray Research Ctr. North Bengal University My collaborators: Prabir Banik and Biplab Bijay.
Gamma-Ray Bursts: Open Questions and Looking Forward Ehud Nakar Tel-Aviv University 2009 Fermi Symposium Nov. 3, 2009.
The peak energy and spectrum from dissipative GRB photospheres Dimitrios Giannios Physics Department, Purdue Liverpool, June 19, 2012.
Stochastic Wake Field particle acceleration in GRB G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani.
High-Energy Gamma-Rays and Physical Implication for GRBs in Fermi Era
Jets Two classes of jets from X-ray binaries
Hot Relics in GRB Photosphere and GeV Photon Delay Kunihito Ioka (KEK)
K S Cheng Department of Physics University of Hong Kong Collaborators: W.M. Suen (Wash. U) Lap-Ming Lin (CUHK) T.Harko & R. Tian (HKU)
High Energy Emissions from Gamma-ray Bursts (GRBs)
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:
Neutrino-Cooled Accretion Models for Gamma-Ray Bursts Tong Liu, Wei-Min Gu, Li Xue, & Ju-Fu Lu Institute of Theoretical Physics and Astrophysics, Xiamen.
Neutrinos produced by heavy nuclei injected by the pulsars in massive binaries Marek Bartosik & W. Bednarek, A. Sierpowska Erice ISCRA 2004.
Gamma-Ray Bursts and unmagnetized relativistic collisionless shocks Ehud Nakar Caltech.
(Review) K. Ioka (Osaka U.) 1.Short review of GRBs 2.HE  from GRB 3.HE  from Afterglow 4.Summary.
Accretion onto Black Hole : Advection Dominated Flow
A Century of Cosmology August 27-31, 2007, Venice G.V. Vereshchagin M. Lattanzi, R. Ruffini, G.V. Vereshchagin (From) massive neutrinos and inos and the.
Gamma-ray Bursts from Synchrotron Self-Compton Emission Juri Poutanen University of Oulu, Finland Boris Stern AstroSpace Center, Lebedev Phys. Inst., Moscow,
Formation of BH-Disk system via PopIII core collapse in full GR National Astronomical Observatory of Japan Yuichiro Sekiguchi.
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
The prompt optical emission in the Naked Eye Burst R. Hascoet with F. Daigne & R. Mochkovitch (Institut d’Astrophysique de Paris) Kyoto − Deciphering then.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Slow heating, fast cooling in gamma-ray bursts Juri Poutanen University of Oulu, Finland +Boris Stern + Indrek Vurm.
What GRBs can bring to Particle Astrophysics
Particle acceleration and the microphysics of gamma-ray burst shocks
Gamma-ray bursts from magnetized collisionally heated jets
Neutrinos as probes of ultra-high energy astrophysical phenomena
Review Lepton Number Particle Lepton number (L) electron 1 neutrino
Photosphere Emission in Gamma-Ray Bursts
Can we probe the Lorentz factor of gamma-ray bursts from GeV-TeV spectra integrated over internal shocks ? Junichi Aoi (YITP, Kyoto Univ.) co-authors:
Gamma-Ray Bursts Ehud Nakar Caltech APCTP 2007 Feb. 22.
Andrei M. Beloborodov Columbia University
Gerhard Raven Eric Laenen Hylke Koers
Presentation transcript:

The effect of neutrinos on the initial fireballs in GRB ’ s Talk based on astro-ph/ (HK and Ralph Wijers) Hylke Koers NIKHEF & University of Amsterdam Amsterdam, The Netherlands

What ’ s a gamma-ray burst? Hylke Koers, NIKHEF, Amsterdam catastrophic event fireball (Cavallo and Rees 1978) shocks: particle acceleration electrons: 1 MeV photons protons: eV neutrinos (Waxman & Bahcall 1997) Key features  Total energy ~ erg  Rapid variability: compact source  Beaming  Lorentz factors  ~ 300 Overview of generic model cm cm

Motivation Hylke Koers, NIKHEF, Amsterdam Assumptions for fireball  Spherical symmetry  Thermal energy domination Look at ’ s to learn about the central engine What is the neutrino physics?  Can neutrino cooling prevent an explosion?  Can we detect neutrinos from the central engine?

The fireball Hylke Koers, NIKHEF, Amsterdam fire · ball [ ‘ fIr- ” bol]: A tightly coupled plasma of photons, electron-positron pairs (and neutrinos) Ballpark numbers  Energy ~ erg  Radius ~ cm  Temperature~ 2 · K (20 MeV)  ee n p ~ cm -3 (thermodynamics) ~ cm -3 (baryon loading: 1 TeV / baryon) Dynamics: E R = const (Shemi & Piran 1990)

The fireball: electrons and positrons Hylke Koers, NIKHEF, Amsterdam Net and total number density  n e := n e- - n e+ n e := n e- + n e+ Charge neutrality Low baryon density  small chemical potential  n e = n p = Y e n B  n e « n e   e « k B T Environment:  High temperature  Low nucleon density  Very small electron chemical potential

Neutrino physics: processes Hylke Koers, NIKHEF, Amsterdam Leptonic processes  Photoneutrino:e  +  e  + +  Plasma process:  +  Pair annihilation:e + + e -  +  Scattering:e  + e  + Nucleonic processes  Electron capturep + e -  n + e  Positron capturen + e +  p + e  Together: non-degenerate URCA  Inverse: absorption  Scattering:N + N +

Neutrino physics: emissivity Hylke Koers, NIKHEF, Amsterdam

Neutrino physics: mfp Hylke Koers, NIKHEF, Amsterdam The neutrino physics is dominated by leptonic processes

Neutrino physics: parameters Hylke Koers, NIKHEF, Amsterdam Electron-positron pair annihilation (e + e -  )  All flavours, though mostly electron-type  As much neutrinos as antineutrinos  Emissivity scales as T 9 (Dicus 1972) Q = 3.6 · erg s -1 cm -3 T K 9 Creation rate parameter   = t c /t e = E c s / V Q R  E -5/4 R 11/4 Scattering off electrons and positrons (e   e  )  Electron-type neutrinos are bound more strongly  Neutrinos and antineutrinos same mfp  Mean free path scales as T -5 (Tubbs and Schramm 1975) = 10 7 cm -5 T K Optical depth   = R /  E 5/4 R -11/4

Neutrino physics: phase diagram Hylke Koers, NIKHEF, Amsterdam ,  neutrinos: 14/43 ~ 33%e neutrinos: 7/29 ~ 24%E R = const

Neutrino physics and emission Hylke Koers, NIKHEF, Amsterdam Physics for ‘ standard ’ initial conditions:  Thermodynamic equilibrium  Equal amount of neutrinos and antineutrinos  Hydrodynamic expansion : thermal energy  kinetic energy  Continous cooling not important e : 24% ,  : 33% Neutrino emission:  Two decoupling bursts, effectively one  Isotropic  Total energy:  Thermal spectrum: T obs ~ T 0 (blueshift: Goodman 1986) E = 3 · erg 11/16 E0E erg R0R cm = 56 MeV -3/41/4 E0E erg R0R cm

Neutrino emission: detectability Hylke Koers, NIKHEF, Amsterdam Can we detect a neutrino source with  Total energy erg  Mean energy MeV  Isotropic Detection feasible up to 4 Mpc (rough S/N estimate) Investigated by Halzen et al. for Amanda/IceCUBE  Detection channel: p + e  n + e +  Positron emits Cerenkov light  Detection by PMT ’ s (very large attenuation length in ice)

Hylke Koers, NIKHEF, Amsterdam The effect of neutrinos on the fireball  Fireball starts neutrino-opaque  Thermal equilibrium is established rapidly  Neutrinos follow the standard hydrodynamical evolution  Cooling is never fast enough to prevent an explosion Neutrino emission  Two decoupling bursts, effectively one  Continuous cooling not important  Roughly 30% of the initial energy carried away  Isotropic  Neutrinos and antineutrinos of all flavours  Mean energy roughly 60 MeV  Detection feasible up to 4 Mpc (Halzen & Jaczko 1996) Conclusion

Conversion back to heat Shocks accelerate particles, emit radiation Fireball expansion Kinetic energy of baryons Energy flow Hylke Koers, NIKHEF, Amsterdam Transfer to fireball Thermal Poynting flux Black hole-accretion disk Energy reservoir BH spin energy Accretion disk binding energy