TEGANGAN DAN REGANGAN GESER SHEAR STRESS AND STRAIN

Slides:



Advertisements
Similar presentations
Design of Steel Tension Members
Advertisements

Tension Members Last Time
STATICALLY DETERMINATE STRESS SYSTEMS
Mechanics of Materials – MAE 243 (Section 002) Spring 2008
Remaining lectures Last lecture by Dr. Darpe: Wed, 3 rd Oct Lectures by Prof S R Kale 22 st Oct (Mon) 24 th Oct (Wed) and 31 st Oct (Wed) 11am – 11:55am.
Connection Design.
Design of Tension Members
Tutorial 4 MECH 101 Liang Tengfei Office phone : Mobile : Office hour : 14:00-15:00 Fri 1.
Design of Tension Members
MAE 314 – Solid Mechanics Yun Jing
Chapter 5 Fatigue.
Home Work #3 Due Date: 11 Mar, 2010 (Turn in your assignment at the mail box of S581 outside the ME general office) The solutions must be written on single-side.
Chapter -9 WEB STIFFENERS.
Connection of flange plate with web
Shear - Tensile - Compression Stresses Slip Ted 126 Spring 2007.
Fasteners, Powers Screws, Connections
CM 197 Mechanics of Materials Chap 20: Connections
Leaning objectives Axial Stress
Lecture # 2 Allowable Stress Objective:
Tension Members Last Time
Copyright © 2011 Pearson Education South Asia Pte Ltd
Chapter 11 Flange splice.
Shear Stress Shear stress is defined a the component of force that acts parallel to a surface area Shear stress is defined a the component of force that.
PLEASE PASS YOUR HOMEWORK TO THE CENTER ISLE TAKE EVERYTHING OFF YOUR DESKS EXCEPT A PENCIL OR PEN AND CALCULATOR: QUIZ TIME 1.
Dr. Ali I. Tayeh First Semester
Design of Tension Members
Mechanics of Materials Goal:Load Deformation Factors that affect deformation of a structure P PPP Stress: intensity of internal force.
analysis of moment resisting connections
Chapter 10 Web splice.
MECHANICS OF MATERIALS 7th Edition
Shear Stress and Strain
STRUT & TIE MODELS (S-T-M)
ERT352 FARM STRUCTURES TRUSS DESIGN
FOOTINGS. FOOTINGS Introduction Footings are structural elements that transmit column or wall loads to the underlying soil below the structure. Footings.
Poisson’s Ratio For a slender bar subjected to axial loading:
Section XI Keys, Pins, & Splines.
ENT 153 TUTORIAL 1.
STRENGTHS Chapter Intro Dealing with relationship between the external loads applied to an elastic body and the intensity of the internal forces.
Mechanics of Materials – MAE 243 (Section 002) Spring 2008 Dr. Konstantinos A. Sierros.
Mechanics of Materials, 5e Chapter 1 Tension, Compression, and Shear.
LRFD-Steel Design Dr. Ali Tayeh Second Semester
Overview of Mechanical Engineering for Non-MEs Part 2: Mechanics of Materials 6 Introduction – Concept of Stress.
Copyright © 2009 Pearson Education, Inc. An object with forces acting on it, but with zero net force, is said to be in equilibrium. The Conditions for.
Teaching Modules for Steel Instruction TENSION MEMBER Design
1.5 AVERAGE SHEAR STRESS Shear stress is the stress component that act in the plane of the sectioned area. Consider a force F acting to the bar For rigid.
Strength of Material-1 Introduction. Dr. Attaullah Shah.
NAZARIN B. NORDIN What you will learn: Strength, elesticity, ductility, malleability, brittleness, toughness, hardness Ferrous/ non-ferrous.
COMPERSION MEMBER.  An initially straight strut or column, compressed by gradually increasing equal  and opposite axial forces at the ends is considered.
BEAMS: Beams are structural members that can carry transverse loads which produce bending moments & shear force. Girders: Main load carrying members into.
DESIGN OF COLUMN BASE PLATES AND STEEL ANCHORAGE TO CONCRETE Elena Papadopoulos ENCE 710 Spring 2009.
Structures What things do I need to find out in order to predict if what I design will stand up to the use I intend to put it through?
Structural Drafting Shear stress in Bolts. Fastener Loads and Stresses Load:External force applied to a member. Stress: Internal force acting on a member.
1 PennDOT Truss Gusset Plate Analysis and Ratings Spreadsheet Overview Karim Naji Assistant Structural Engineer FHWA PA Division
1. Two rods, one of nylon and one of steel, are rigidly connected as shown in Fig. P.1.2. Determine the stresses and axial deformations when an axial load.
SECTION 7 DESIGN OF COMPRESSION MEMBERS
ERT352 FARM STRUCTURES TRUSS DESIGN
KONSTRUKSI MESIN (3 SKS)
Tilt N’ Store Design Analysis
Design of Tension Members
1.6 Allowable Stress Allowable Load < Failure Load
Chapter 1 Stress and Strain.
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg
BFC Structural Steel and Timber Design
Structure I Course Code: ARCH 208 Dr. Aeid A. Abdulrazeg.
CONNECTION Prepared by : Shamilah
ENCE 455 Design of Steel Structures
Tilt N’ Store Design Analysis
Part II Design of Fasteners and Joints
Fasteners, Powers Screws, Connections
Structural Fasteners Chap. (4) Non-Structural (A-307) Bolts A325
Presentation transcript:

TEGANGAN DAN REGANGAN GESER SHEAR STRESS AND STRAIN Fredy Kurniawan, PHD

CONTOH TEGANGAN GESER GANDA DOUBLE SHEAR STRESS ILUSTRATION Sebagai ilustrasi tentang aksi tegangan geser, tinjaulah sambungan dengan baut seperti terlihat dalam Gambar l-25a. Sambungan ini terdiri atas batang datar A, pengapit C, dan baut B yang menembus lubang di batang dan pengapit. Akibat aksi beban tarik P, batang dan pengapit akan menekan baut dengan cara tumpu (bearing), dan tegangan kontak, yang disebut tegangan tumpu (bearing stresses), akan timbul. Selain itu, batang dan pengapit cenderung menggeser baut, dan kecenderungan ini ditahan oleh tegangan geser pada baut. Untuk memperjelas aksi tumpu dan tegangan geser, mari kita lihat sambungan tersebut dari samping (Gambar 1-25b). Dengan sudut pandang ini kita menggambar diagram benda-bebas dari baut (Gambar 1-25c). Tegangan tumpu yang diberikan oleh pengapit ke baut ada di bagian kiri dari diagram benda bebas dan diberi label 1 dan 3. Tegangan dari batang ada di bagian kanan dan diberi label 2. Distribusi aktual tegangan tumpu sulit ditentukan sehingga biasa diasumsikan bahwa tegangan ini terbagi rata. Berdasarkan atas asumsi terbagi rata, kita dapat menghitung tegangan tumpu rata-rata ab dengan membagi gaya tumpu total Fb dengan luas tumpu Ab:

CONTOH TEGANGAN GESER TUNGGAL SINGLE SHEAR STRESS ILUSTRATION Bolted connection in which the bolt is loaded in single shear Sebagai ilustrasi tentang aksi tegangan geser, tinjaulah sambungan dengan baut seperti terlihat dalam Gambar l-25a. Sambungan ini terdiri atas batang datar A, pengapit C, dan baut B yang menembus lubang di batang dan pengapit. Akibat aksi beban tarik P, batang dan pengapit akan menekan baut dengan cara tumpu (bearing), dan tegangan kontak, yang disebut tegangan tumpu (bearing stresses), akan timbul. Selain itu, batang dan pengapit cenderung menggeser baut, dan kecenderungan ini ditahan oleh tegangan geser pada baut. Untuk memperjelas aksi tumpu dan tegangan geser, mari kita lihat sambungan tersebut dari samping (Gambar 1-25b). Dengan sudut pandang ini kita menggambar diagram benda-bebas dari baut (Gambar 1-25c). Tegangan tumpu yang diberikan oleh pengapit ke baut ada di bagian kiri dari diagram benda bebas dan diberi label 1 dan 3. Tegangan dari batang ada di bagian kanan dan diberi label 2. Distribusi aktual tegangan tumpu sulit ditentukan sehingga biasa diasumsikan bahwa tegangan ini terbagi rata. Berdasarkan atas asumsi terbagi rata, kita dapat menghitung tegangan tumpu rata-rata ab dengan membagi gaya tumpu total Fb dengan luas tumpu Ab: In the example of Fig. 1-25, which shows a bolt in single shear, the shear force V is equal to the load P and the area A is the cross-sectional area of the bolt. However, in the example of Fig. 1-24, where the bolt is in double shear, the shear force V equals P/2.

CONTOH TEGANGAN GESER TUNGGAL SINGLE SHEAR STRESS ILUSTRATION

CONTOH TEGANGAN GESER TUNGGAL SINGLE SHEAR STRESS ILUSTRATION The average shear stress on the cross section of a bolt is obtained by dividing the total shear force V by the area A of the cross section on which it acts, as follows:

TEGANGAN GESER DI SENDI BEARING STRESS BETWEEN STRUT AND PIN A steel strut S serving as a brace for a boat hoist transmits a compressive force P 12 k to the deck of a pier (Fig. 1-30a). The strut has a hollow square cross section with wall thickness t 0.375 in. (Fig. 1-30b), and the angle u between the strut and the horizontal is 40° . A pin through the strut transmits the compressive force from the strut to two gussets G that are welded to the base plate B. Four anchor bolts fasten the base plate to the deck. The diameter of the pin is dpin 0.75 in., the thickness of the gussets is tG 0.625 in., the thickness of the base plate is tB 0.375 in., and the diameter of the anchor bolts is dbolt 0.50 in. (a) Pin connection between strut S & base plate B. (b) Cross section through the strut S. Determine the following stresses: (a) the bearing stress between the strut and the pin, (b) the shear stress in the pin, (c) the bearing stress between the pin and the gussets, (d) the bearing stress between the anchor bolts and the base plate, and (e) the shear stress in the anchor bolts. (Disregard any friction between the base plate and the deck.)

TEGANGAN GESER DI SENDI BEARING STRESS BETWEEN STRUT AND PIN Solution: (a) Bearing stress between strut and pin. The average value of the bearing stress between the strut and the pin is found by dividing the force in the strut by the total bearing area of the strut against the pin. The latter is equal to twice the thickness of the strut (because bearing occurs at two locations) times the diameter of the pin (see Fig. 1-30b). Thus, the bearing stress is This bearing stress is not excessive for a strut made of structural steel. (b) Shear stress in pin. As can be seen from Fig. 1-30b, the pin tends to shear on two planes, namely, the planes between the strut and the gussets. Therefore, the average shear stress in the pin (which is in double shear) is equal to the total load applied to the pin divided by twice its cross-sectional area: