Optimization - Lecture 4, Part 1 M. Pawan Kumar Slides available online

Slides:



Advertisements
Similar presentations
C&O 355 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A.
Advertisements

Duality for linear programming. Illustration of the notion Consider an enterprise producing r items: f k = demand for the item k =1,…, r using s components:
A Randomized Polynomial- Time Simplex Algorithm for Linear Programming CS3150 Course Presentation.
CPSC 455/555 Combinatorial Auctions, Continued… Shaili Jain September 29, 2011.
1 LP Duality Lecture 13: Feb Min-Max Theorems In bipartite graph, Maximum matching = Minimum Vertex Cover In every graph, Maximum Flow = Minimum.
IEOR 4004 Midterm review (Part II) March 12, 2014.
Lecture #3; Based on slides by Yinyu Ye
C&O 355 Mathematical Programming Fall 2010 Lecture 22 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
Introduction to Algorithms
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2002 Lecture 8 Tuesday, 11/19/02 Linear Programming.
Dragan Jovicic Harvinder Singh
Theory of Computing Lecture 14 MAS 714 Hartmut Klauck.
The Simplex Method and Linear Programming Duality Ashish Goel Department of Management Science and Engineering Stanford University Stanford, CA 94305,
C&O 355 Mathematical Programming Fall 2010 Lecture 20 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Mathematical Programming Fall 2010 Lecture 15 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A.
C&O 355 Lecture 12 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A A A A A A A A.
Basic Feasible Solutions: Recap MS&E 211. WILL FOLLOW A CELEBRATED INTELLECTUAL TEACHING TRADITION.
A Randomized Polynomial-Time Simplex Algorithm for Linear Programming Daniel A. Spielman, Yale Joint work with Jonathan Kelner, M.I.T.
CS38 Introduction to Algorithms Lecture 15 May 20, CS38 Lecture 15.
1 Linear Programming Jose Rolim University of Geneva.
CSCI 3160 Design and Analysis of Algorithms Tutorial 6 Fei Chen.
UMass Lowell Computer Science Analysis of Algorithms Prof. Karen Daniels Fall, 2006 Lecture 9 Wednesday, 11/15/06 Linear Programming.
Linear Programming and Approximation
Totally Unimodular Matrices Lecture 11: Feb 23 Simplex Algorithm Elliposid Algorithm.
1 Introduction to Linear and Integer Programming Lecture 9: Feb 14.
Introduction to Linear and Integer Programming Lecture 7: Feb 1.
Solving a system of equations 1 x x x 3 = 3 2 x x x 3 = 2 3 x x x 3 = 3.
Dual Problem of Linear Program subject to Primal LP Dual LP subject to ※ All duality theorems hold and work perfectly!
Duality Dual problem Duality Theorem Complementary Slackness
Chapter 10: Iterative Improvement
Computational Methods for Management and Economics Carla Gomes
ISM 206 Lecture 4 Duality and Sensitivity Analysis.
Polyhedral Optimization Lecture 3 – Part 3 M. Pawan Kumar Slides available online
Polyhedral Optimization Lecture 3 – Part 2
C&O 355 Lecture 2 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
Polyhedral Optimization Lecture 1 – Part 2 M. Pawan Kumar Slides available online
Computational Geometry Piyush Kumar (Lecture 5: Linear Programming) Welcome to CIS5930.
Linear Programming Piyush Kumar. Graphing 2-Dimensional LPs Example 1: x y Feasible Region x  0y  0 x + 2 y  2 y  4 x  3 Subject.
Polynomial Time Algorithms P = { computational problems that can be solved efficiently } i.e., solved in time · n c, for some constant c, where n=input.
Duality Theory 對偶理論.
C&O 355 Mathematical Programming Fall 2010 Lecture 4 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
Introduction to Operations Research
Linear Programming Data Structures and Algorithms A.G. Malamos References: Algorithms, 2006, S. Dasgupta, C. H. Papadimitriou, and U. V. Vazirani Introduction.
Theory of Computing Lecture 13 MAS 714 Hartmut Klauck.
TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AA A A A A A A A A Image:
C&O 355 Mathematical Programming Fall 2010 Lecture 8 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A A.
Linear Programming Maximize Subject to Worst case polynomial time algorithms for linear programming 1.The ellipsoid algorithm (Khachian, 1979) 2.Interior.
C&O 355 Lecture 7 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A A.
CPSC 536N Sparse Approximations Winter 2013 Lecture 1 N. Harvey TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAAAAA.
Linear Programming: Formulations, Geometry and Simplex Method Yi Zhang January 21 th, 2010.
Optimization - Lecture 5, Part 1 M. Pawan Kumar Slides available online
Submodularity Reading Group Submodular Function Minimization via Linear Programming M. Pawan Kumar
Linear Programming Piyush Kumar Welcome to CIS5930.
Submodularity Reading Group Matroid Polytopes, Polymatroid M. Pawan Kumar
Lap Chi Lau we will only use slides 4 to 19
ADVANCED COMPUTATIONAL MODELS AND ALGORITHMS
Topics in Algorithms Lap Chi Lau.
Proving that a Valid Inequality is Facet-defining
Duality for linear programming.
Chap 9. General LP problems: Duality and Infeasibility
Polyhedron Here, we derive a representation of polyhedron and see the properties of the generators. We also see how to identify the generators. The results.
Chapter 5. Sensitivity Analysis
Polyhedron Here, we derive a representation of polyhedron and see the properties of the generators. We also see how to identify the generators. The results.
Linear Programming and Approximation
2. Generating All Valid Inequalities
Chapter 5. The Duality Theorem
Lecture 20 Linear Program Duality
Proving that a Valid Inequality is Facet-defining
Chapter 2. Simplex method
Linear Constrained Optimization
Presentation transcript:

Optimization - Lecture 4, Part 1 M. Pawan Kumar Slides available online

“Recap” of Linear Programming

Polyhedron Ax ≤ b A : m x n matrix b: m x 1 vector

Bounded Polyhedron = Polytope Ax ≤ b A : m x n matrix b: m x 1 vector

Vertex z is a vertex of P = {x, Ax ≤ b} z is not a convex combination of two points in P There does not exist x, y ∈ P and 0 < λ < 1 x ≠ z and y ≠ z such that z = λ x + (1-λ) y

Vertex z is a vertex of P = {x, Ax ≤ b} A z is a submatrix of A Contains all rows of A such that a i T z = b i Recall A is an m x n matrix

Vertex z is a vertex of P Rank of A z = n Proof? See “hidden” slides

Proof Sketch: Necessity Let z be a vertex of P Suppose rank(A z ) < nA z c = 0 for some c ≠ 0 Then there exists a d > 0 such that z - dc ∈ Pz + dc ∈ P Contradiction

Proof Sketch: Sufficiency Suppose rank(A z ) = n but z is not a vertex of P z = (x+y)/2 for some x, y ∈ P, x ≠ y ≠ z For each a in A z Implies A z (x-y) = 0Contradiction a T x ≤ b = a T za T y ≤ b = a T z

Linear Programming Duality Solving the LP Outline

Linear Program Maximize a linear function Over a polyhedral feasible region s.t. A x ≤ b max x c T x A: m x n matrix b: m x 1 vector c: n x 1 vector Objective function Constraints x: n x 1 vector

Example 4x 1 – x 2 ≤ 8 max x x 1 + x 2 2x 1 + x 2 ≤ 10 5x 1 - 2x 2 ≥ -2 x 1 ≥ 0 x 2 ≥ 0 s.t. What is c? A?b?

Example x 1 ≥ 0 x 2 ≥ 0

Example 4x 1 – x 2 = 8 x 1 ≥ 0 x 2 ≥ 0

Example 4x 1 – x 2 ≤ 8 x 1 ≥ 0 x 2 ≥ 0

Example 4x 1 – x 2 ≤ 8 2x 1 + x 2 ≤ 10 x 1 ≥ 0 x 2 ≥ 0

Example 4x 1 – x 2 ≤ 8 2x 1 + x 2 ≤ 10 5x 1 - 2x 2 ≥ -2 x 1 ≥ 0 x 2 ≥ 0

Example 4x 1 – x 2 ≤ 8 2x 1 + x 2 ≤ 10 5x 1 - 2x 2 ≥ -2 x 1 ≥ 0 x 2 ≥ 0 max x x 1 + x 2 x 1 + x 2 = 0

Example 4x 1 – x 2 ≤ 8 2x 1 + x 2 ≤ 10 5x 1 - 2x 2 ≥ -2 x 1 ≥ 0 x 2 ≥ 0 max x x 1 + x 2 x 1 + x 2 = 8 Optimal solution

Linear Programming Duality Solving the LP Outline

Example 2x 1 + 2x 2 + 5x 3 ≤ 24 max x 3x 1 + x 2 + 2x 3 4x 1 + x 2 + 2x 3 ≤ 36 -x 1 ≤ 0, -x 2 ≤ 0, -x 3 ≤ 0 x 1 + x 2 + 3x 3 ≤ 30 s.t. 3 x 2 x 7 x Scale the constraints, add them up 3x 1 + x 2 + 2x 3 ≤ 90 Upper bound on solution

Example 2x 1 + 2x 2 + 5x 3 ≤ 24 max x 3x 1 + x 2 + 2x 3 4x 1 + x 2 + 2x 3 ≤ 36 -x 1 ≤ 0, -x 2 ≤ 0, -x 3 ≤ 0 x 1 + x 2 + 3x 3 ≤ 30 s.t. 1 x Scale the constraints, add them up 3x 1 + x 2 + 2x 3 ≤ 36 Upper bound on solution

Example 2x 1 + 2x 2 + 5x 3 ≤ 24 max x 3x 1 + x 2 + 2x 3 4x 1 + x 2 + 2x 3 ≤ 36 -x 1 ≤ 0, -x 2 ≤ 0, -x 3 ≤ 0 x 1 + x 2 + 3x 3 ≤ 30 s.t. 1 x Scale the constraints, add them up 3x 1 + x 2 + 2x 3 ≤ 36 Tightest upper bound?

Example 2x 1 + 2x 2 + 5x 3 ≤ 24 max x 3x 1 + x 2 + 2x 3 4x 1 + x 2 + 2x 3 ≤ 36 -x 1 ≤ 0, -x 2 ≤ 0, -x 3 ≤ 0 x 1 + x 2 + 3x 3 ≤ 30 s.t. y4y4 y1y1 y2y2 y3y3 y5y5 y6y6 y 1, y 2, y 3, y 4, y 5, y 6 ≥ 0 We should be able to add up the inequalities

Example 2x 1 + 2x 2 + 5x 3 ≤ 24 max x 3x 1 + x 2 + 2x 3 4x 1 + x 2 + 2x 3 ≤ 36 -x 1 ≤ 0, -x 2 ≤ 0, -x 3 ≤ 0 x 1 + x 2 + 3x 3 ≤ 30 s.t. y4y4 y1y1 y2y2 y3y3 y5y5 y6y6 -y 1 + y 4 + 2y 5 + 4y 6 = 3 Coefficient of x 1 should be 3

Example 2x 1 + 2x 2 + 5x 3 ≤ 24 max x 3x 1 + x 2 + 2x 3 4x 1 + x 2 + 2x 3 ≤ 36 -x 1 ≤ 0, -x 2 ≤ 0, -x 3 ≤ 0 x 1 + x 2 + 3x 3 ≤ 30 s.t. y4y4 y1y1 y2y2 y3y3 y5y5 y6y6 -y 2 + y 4 + 2y 5 + y 6 = 1 Coefficient of x 2 should be 1

Example 2x 1 + 2x 2 + 5x 3 ≤ 24 max x 3x 1 + x 2 + 2x 3 4x 1 + x 2 + 2x 3 ≤ 36 -x 1 ≤ 0, -x 2 ≤ 0, -x 3 ≤ 0 x 1 + x 2 + 3x 3 ≤ 30 s.t. y4y4 y1y1 y2y2 y3y3 y5y5 y6y6 -y 3 + 3y 4 + 5y 5 + 2y 6 = 2 Coefficient of x 3 should be 2

Example 2x 1 + 2x 2 + 5x 3 ≤ 24 max x 3x 1 + x 2 + 2x 3 4x 1 + x 2 + 2x 3 ≤ 36 -x 1 ≤ 0, -x 2 ≤ 0, -x 3 ≤ 0 x 1 + x 2 + 3x 3 ≤ 30 s.t. y4y4 y1y1 y2y2 y3y3 y5y5 y6y6 min y 30y y y 6 Upper bound should be tightest

Dual min y 30y y y 6 s.t. y 1, y 2, y 3, y 4, y 5, y 6 ≥ 0 -y 1 + y 4 + 2y 5 + 4y 6 = 3 -y 2 + y 4 + 2y 5 + y 6 = 1 -y 3 + 3y 4 + 5y 5 + 2y 6 = 2 Original problem is called primal Dual of dual is primal

Dual s.t. A x ≤ b max x c T x

Dual - y T (A x – b)max x c T x min y≥0 KKT Condition?A T y = c min y≥0 bTybTy s.t. A T y = c

min y≥0 bTybTy s.t. A T y = c s.t. A x ≤ b max x c T x Primal Dual

Strong Duality min y≥0 bTybTy s.t. A T y = c s.t. A x ≤ b max x c T x Primal Dual p = d = If p ≠ ∞ or d ≠ ∞, then p = d. Skipping the proof Think back to the intuition of dual

Question s.t. A 1 x ≤ b 1 max x c T x A 2 x ≥ b 2 A 3 x = b 3 Dual?

Weak Duality Let x be a feasible solution of the primal c T x ≤ b T y Objective of any primal ≤ Objective of any dual Think back to the intuition of dual Let y be a feasible solution of the dual

Linear Programming Duality Solving the LP Outline

Graphical Solution 4x 1 – x 2 ≤ 8 2x 1 + x 2 ≤ 10 5x 1 - 2x 2 ≥ -2 x 1 ≥ 0 x 2 ≥ 0 max x x 1 + x 2 x 1 + x 2 = 8 Optimal solution at a vertex

Graphical Solution 4x 1 – x 2 ≤ 8 2x 1 + x 2 ≤ 10 5x 1 - 2x 2 ≥ -2 x 1 ≥ 0 x 2 ≥ 0 max x x 1 x 1 = 3 Optimal solution at a vertex

Graphical Solution 4x 1 – x 2 ≤ 8 2x 1 + x 2 ≤ 10 5x 1 - 2x 2 ≥ -2 x 1 ≥ 0 x 2 ≥ 0 max x x 2 x 2 = 6 Optimal solution at a vertex

Graphical Solution 4x 1 – x 2 ≤ 8 2x 1 + x 2 ≤ 10 5x 1 - 2x 2 ≥ -2 x 1 ≥ 0 x 2 ≥ 0 An optimal solution always at a vertex Proof? max x c T x

Dantzig (1951): Simplex Method –Search over vertices of the polyhedra –Worst-case complexity is exponential –Smoothed complexity is polynomial Khachiyan (1979, 1980): Ellipsoid Method –Polynomial time complexity –LP is a P optimization problem Karmarkar (1984): Interior-point Method –Polynomial time complexity –Competitive with Simplex Method Solving the LP

Plenty of standard software available Mosek ( –C++ API –Matlab API –Python API –Free academic license Solving the LP

Dantzig (1951): Simplex Method –Search over vertices of the polyhedra –Worst-case complexity is exponential –Smoothed complexity is polynomial Khachiyan (1979, 1980): Ellipsoid Method –Polynomial time complexity –LP is a P optimization problem Karmarkar (1984): Interior-point Method –Polynomial time complexity –Competitive with Simplex Method Solving the LP

Optimization vs. Feasibility s.t. A x ≤ b max x c T x Optimization Feasibility asks if there exists an x such that c T x ≥ K A x ≤ b Optimization via binary search on K Feasible solution For a given K

Feasibility via Ellipsoid Method Feasible region of LP

Feasibility via Ellipsoid Method Ellipsoid containing feasible region of LP

Feasibility via Ellipsoid Method Centroid of ellipsoid

Feasibility via Ellipsoid Method Separating hyperplane for centroid

Feasibility via Ellipsoid Method Smallest ellipsoid containing “truncated” ellipsoid

Feasibility via Ellipsoid Method Centroid of ellipsoid

Feasibility via Ellipsoid Method Separating hyperplane for centroid

Feasibility via Ellipsoid Method Smallest ellipsoid containing “truncated” ellipsoid

Feasibility via Ellipsoid Method Centroid of ellipsoid

Feasibility via Ellipsoid Method Terminate when feasible solution is found

Separating hyperplane in polynomial time –Check each of the ‘m’ LP constraints in O(n) time New ellipsoid in polynomial time –Shor (1971), Nemirovsky and Yudin (1972) Polynomial iterations (Khachiyan) –Volume of ellipsoid reduces exponentially Only requires a separation oracle –Constraint matrix A can be very large Ellipsoid Method Useful Fact !!

Questions?