Steffen A. BassDynamics of Hadronization #1 Steffen A. Bass Duke University & RIKEN-BNL Research Center The baryon puzzle at RHIC Recombination + Fragmentation.

Slides:



Advertisements
Similar presentations
1 Jet Structure of Baryons and Mesons in Nuclear Collisions l Why jets in nuclear collisions? l Initial state l What happens in the nuclear medium? l.
Advertisements

Pawan Kumar NetrakantiPANIC-2005, Santa Fe1 Pion, proton and anti-proton transverse momentum spectra in p+p and d+Au collisions at  s NN = 200 GeV Outline:
Effects of minijet degradation on hadron observables in heavy-ion collisions Lilin Zhu Sichuan University QPT2013, Chengdu.
Recombination for JET Shower MC: Status and Discussion Rainer Fries Texas A&M University JET NLO & MC Meeting Wayne State University, August 23, 2013 On.
K*(892) Resonance Production in Au+Au and Cu+Cu Collisions at  s NN = 200 GeV & 62.4 GeV Motivation Analysis and Results Summary 1 Sadhana Dash Institute.
Peter Christiansen (Lund University) for the ALICE Collaboration.
Identified particle transverse momentum distributions in 200 GeV Au+Au collisions at RHIC 刘海东 中国科技大学.
Heavy Quark Probes of QCD Matter at RHIC Huan Zhong Huang University of California at Los Angeles ICHEP-2004 Beijing, 2004.
1 Heavy Ion Collisions at LHC in a Multiphase Transport Model  A multi-phase transport (AMPT) model  Rapidity and transverse momentum distributions 
1 High-p T Physics at RHIC and Evidences of Recombination Rudolph C. Hwa University of Oregon International Symposium on Multiparticle Dynamics Sonoma,
Hadronization of Dense Partonic Matter Rainer Fries University of Minnesota Talk at SQM 2006 March 28, 2006.
03/14/2006WWND2006 at La Jolla1 Identified baryon and meson spectra at intermediate and high p T in 200 GeV Au+Au Collisions Outline: Motivation Intermediate.
We distinguish two hadronization mechanisms:  Fragmentation Fragmentation builds on the idea of a single quark in the vacuum, it doesn’t consider many.
Nu XuInternational Conference on Strangeness in Quark Matter, UCLA, March , 20061/20 Search for Partonic EoS in High-Energy Nuclear Collisions Nu.
Jana Bielcikova (Yale University) for the STAR Collaboration 23 rd Winter Workshop on Nuclear Dynamics February 12-18, 2007 Two-particle correlations with.
Jana Bielcikova (Yale University) High-p T physics at LHC, Jyväskylä March 23-27, 2007 Strange particle correlations – coalescence at RHIC and LHC.
1 Searching for the QGP at RHIC Che-Ming Ko Texas A&M University  Signatures of QGP  Quark coalescence Baryon/meson ratio Hadron elliptic flows and quark.
XXXIII International Symposium on Multiparticle Dynamics, September 7, 2003 Kraków, Poland Manuel Calderón de la Barca Sánchez STAR Collaboration Review.
Identified and Inclusive Charged Hadron Spectra from PHENIX Carla M Vale Iowa State University for the PHENIX Collaboration WWND, March
High p T identified hadron anisotropic flow and Deuteron production in 200 GeV Au+Au Collisions Shengli Huang Vanderbilt University for the PHENIX Collaboration.
High p T identified charged hadron v 2 and v 4 in 200GeV AuAu collisions by the PHENIX experiment Shengli Huang Vanderbilt University for the PHENIX Collaboration.
Enke Wang (Institute of Particle Physics, Huazhong Normal University) with A. Majumder, X.-N. Wang I. Introduction II.Quark Recombination and Parton Fragmentation.
Identified Particle Ratios at large p T in Au+Au collisions at  s NN = 200 GeV Matthew A. C. Lamont for the STAR Collaboration - Talk Outline - Physics.
QM2006 Shanghai, China 1 High-p T Identified Hadron Production in Au+Au and Cu+Cu Collisions at RHIC-PHENIX Masahiro Konno (Univ. of Tsukuba) for the PHENIX.
Steffen A. RHIC #1 Steffen A. Bass Duke University & RIKEN-BNL Research Center The Protons Puzzle at RHIC - the demise of pQCD? Recombination.
Strong and Electroweak Matter, June 16, 2004 Manuel Calderón de la Barca Sánchez RHIC Collisions The road so far. RHIC Collisions The road so far.
The Re-Combinatorics of Thermal Quarks LBNL School on Twenty Years of Collective Expansion Berkeley, May 2005 Berndt Müller Duke University.
November 18, Shanghai Anomalous Viscosity of an Expanding Quark-Gluon Plasma Masayuki ASAKAWA Department of Physics, Osaka University S. A.
Olga Barannikova, UIC Probing the Medium at RHIC by Identified Particles.
SQGP Mini-Workshop (2007. Feb. Nagoya University, T.Chujo Baryon anomaly at RHIC Tatsuya Chujo (University of Tsukuba)
09/15/10Waye State University1 Elliptic Flow of Inclusive Photon Ahmed M. Hamed Midwest Critical Mass University of Toledo, Ohio October, 2005 Wayne.
Hot Quarks 2004 July 23, 2004, Taos, New Mexico Tatsuya Chujo Hadron Production at Intermediate p T at RHIC Tatsuya Chujo Vanderbilt University for the.
Steffen A. RHIC #1 Steffen A. Bass Duke University & RIKEN-BNL Research Center Data: Protons at RHIC - the demise of pQCD? Recombination.
Kang Seog Lee Chonnam National University, Korea Dynamical Recombination model of QGP Introduction – recombination model Dynamic recomination calculation.
Steffen A. BassDynamics of Hadronization #1 Steffen A. Bass Duke University & RIKEN-BNL Research Center The baryon puzzle at RHIC Recombination + Fragmentation.
Hadron Collider Physics 2012, 12/Nov/2012, KyotoShinIchi Esumi, Univ. of Tsukuba1 Heavy Ion results from RHIC-BNL ShinIchi Esumi Univ. of Tsukuba Contents.
Phantom Jets: the  puzzle and v 2 without hydrodynamics Rudolph C. Hwa University of Oregon Early Time Dynamics in Heavy Ion Collisions Montreal, July.
Peter Kolb, November 18, 2003Momentum Anisotropies1 Momentum Anisotropies -- Probing the detailed Dynamics Department of Physics and Astronomy State University.
Robert Pak (BNL) 2012 RHIC & AGS Annual Users' Meeting 0 Energy Ro Robert Pak for PHENIX Collaboration.
Quark Recombination in Heavy Ion Collisions
Rainer J. FriesRecombination & Fragmentation #1 Rainer J. Fries University of Minnesota Recombination and Fragmentation of Hadrons from a Dense Parton.
1 Parton Recombination at all p T Rudolph C. Hwa University of Oregon Hard Probes 2004 Ericeira, Portugal, November 2004.
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Strange Probes of QCD Matter Huan Zhong Huang Department of Physics and Astronomy University of California Los Angeles, CA Oct 6-10, 2008; SQM2008.
Multi-Parton Dynamics at RHIC Huan Zhong Huang Department of Physics and Astronomy University of California Los University Oct
Steffen A. BassCorrelations & Fluctuations in Parton Recombination #1 Steffen A. Bass Duke University & RIKEN-BNL Research Center The baryon puzzle at.
Jin-Hui Chen Shanghai Institute of Applied Physics, CAS In collaboration with F. Jin, D. Gangadharan, X. Cai, H. Huang and Y. Ma Parton distributions at.
Kirill Filimonov, ISMD 2002, Alushta 1 Kirill Filimonov Lawrence Berkeley National Laboratory Anisotropy and high p T hadrons in Au+Au collisions at RHIC.
Intermediate pT results in STAR Camelia Mironov Kent State University 2004 RHIC & AGS Annual Users' Meeting Workshop on Strangeness and Exotica at RHIC.
Production of strange particles at RHIC via quark recombination C.B. Yang Institute of Particle Physics, Wuhan, China Collaborated with Rudolph C. Hwa.
Hadron RHIC at intermediate and high p T Conference on Intersections between Particle and Nuclear Physics New York, NY, May 20-23, 2003 Berndt.
Recent developments in RHIC physics Rudolph C. Hwa University of Oregon IHEP seminar June 14, 2005.
Duke University 野中 千穂 Hadron production in heavy ion collision: Fragmentation and recombination in Collaboration with R. J. Fries (Duke), B. Muller (Duke),
Workshop on Modeling of the Parton-Hadron Phase Transition The Summary
High-pT Identified Hadron Production in Au+Au and Cu+Cu Collisions
Strange Probes of QCD Matter
& RIKEN-BNL Research Center
With water up to the neck!
Experimental Studies of Quark Gluon Plasma at RHIC
Fragmentation and Recombination for Exotics in Heavy Ion Collisions
Outline First of all, there’s too much data!! BRAHMS PHOBOS PHENIX
φ-meson production and partonic collectivity at RHIC
Fragmentation or Recombination at High pT?
Shengli Huang Vanderbilt University for the PHENIX Collaboration
用重味探测夸克胶子等离子体 Heavy Flavor as a Probe of Quark-Gluon Plasma
Masahiro Konno (Univ. of Tsukuba) for the PHENIX Collaboration Contact
Identified Particle Production at High Transverse Momentum at RHIC
Hadronization of a QGP via recombination
QGP Formation Signals and Quark Recombination Model
Presentation transcript:

Steffen A. BassDynamics of Hadronization #1 Steffen A. Bass Duke University & RIKEN-BNL Research Center The baryon puzzle at RHIC Recombination + Fragmentation Model Results and Predictions Dynamics of Hadronization: Interplay of Fragmentation and Recombination  R.J. Fries, C. Nonaka, B. Mueller & S.A. Bass, PRL (2003)  R.J. Fries, C. Nonaka, B. Mueller & S.A. Bass, PRC (2003)

Steffen A. BassDynamics of Hadronization #2 The baryon RHIC where does the large proton over pion ratio at high p t come from? why do protons not exhibit the same suppression as pions?  fragmentation yields N p /N π <<1  fragmentation starts with a single fast parton: energy loss affects pions and protons in the same way! ratio of KKP fragmentation functions for p and π from u quarks

Steffen A. BassDynamics of Hadronization #3 Species dependent saturation of elliptic flow hyperon v 2 saturates later and higher than kaon v 2. same effect observed for protons and pions. at low p T the phenomenology seems better described in m T – m 0 than p T, indicating hydro scaling, yet scaling breaks down for high p T what drives the different p T scales for K S and Λ v 2 ?  novel mechanism of baryon formation?

Steffen A. BassDynamics of Hadronization #4 Recombination+Fragmentation Model basic assumptions: at low p t, the quarks and antiquark spectrum is thermal and they recombine into hadrons locally “at an instant”:  features of the parton spectrum are shifted to higher p t in the hadron spectrum at high p t, the parton spectrum is given by a pQCD power law, partons suffer jet energy loss and hadrons are formed via fragmentation of quarks and gluons

Steffen A. BassDynamics of Hadronization #5 Recombination: Pro’s & Con’s Pro’s: for exponential parton spectrum, recombination is more effective than fragmentation baryons are shifted to higher p t than mesons, for same quark distribution  understand behavior of protons! Con’s: simple recombination violates entropy conservation gluons at hadronization need to be converted recombining partons: p 1 +p 2 =p h fragmenting parton: p h = z p, z<1

Steffen A. BassDynamics of Hadronization #6 Recombination: new life for an old idea High Energy Physics Phenomenology: K.P. Das & R.C. Hwa, Phys. Lett. B68, 459 (1977) Quark-Antiquark Recombination in the Fragmentation Region  description of leading particle effect T. Ochiai, Prog. Theo. Phys. 75, 1184 (1986) E. Braaten, Y. Jia & T. Mehen, Phys. Rev. Lett. 89, (2002) R. Rapp & E.V. Shuryak, Phys. Rev. D67, (2003) Heavy-Ion Phenomenology: T. S. Biro, P. Levai & J. Zimanyi, Phys. Lett. B347, 6 (1995) ALCOR: a dynamical model for hadronization  yields and ratios via counting of constituent quarks R.C. Hwa & C.B. Yang, Phys. Rev. C66, (2002) R. Fries, B. Mueller, C. Nonaka & S.A. Bass, Phys. Rev. Lett. 90 V. Greco, C.M. Ko and P. Levai, Phys. Rev. Lett. 90 Anisotropic flow: S. Voloshin, QM2002, nucl-ex/ Z.W. Lin & C.M. Ko, Phys. Rev. Lett 89, (2002) D. Molnar & S. Voloshin, nucl-th/

Steffen A. BassDynamics of Hadronization #7 Recombination: nonrelativistic formalism use thermal quark spectrum given by: w(p) = exp(-p/T) for a Gaussian meson wave function with momentum width Λ M, the meson spectrum is obtained as: similarly for baryons:

Steffen A. BassDynamics of Hadronization #8 Recombination vs. Fragmentation Fragmentation… … but it wins out at large p T, when the spectrum is a power law ~ (p T ) -b : … never competes with recombination for a thermal (exponential) spectrum:

Steffen A. BassDynamics of Hadronization #9 Hadron Spectra

Steffen A. BassDynamics of Hadronization #10 Hadron Ratios vs. p t

Steffen A. BassDynamics of Hadronization #11 Flavor Dependence of high-p t Suppression R+F model describes different R AA behavior of protons and pions in the fragmentation region all hadron flavors exhibit jet-quenching

Steffen A. BassDynamics of Hadronization #12 anisotropic or “elliptic” flow is sensitive to initial geometry Elliptic Flow more flow in collision plane than perpendicular to it less absorption in collision plane than perpendicular to it low p t domain:high p t domain: total elliptic flow is the sum of both contributions: r(p t ): relative weight of the fragmentation contribution in spectra

Steffen A. BassDynamics of Hadronization #13 Parton Number Scaling of v 2  smoking gun for recombination  measurement of partonic v 2 ! in leading order of v 2, recombination predicts:

Steffen A. BassDynamics of Hadronization #14 Two-Particle Correlations Recombination approach allows for two particle correlations, provided they are contained in the parton source distributions Three distinct types are conceivable: F-F, SH-F and SS-SS Ansatz for SS-SS: for two mesons, use product of correlated parton distributions:  Which results in a correlated two hadron yield:

Steffen A. BassDynamics of Hadronization #15 Summary & Outlook The Recombination + Fragmentation Model: provides a natural solution to the baryon puzzle at RHIC describes the intermediate and high p t range of  hadron ratios & spectra  jet-quenching phenomena  elliptic flow  leading / next-to-leading particle correlations provides a microscopic basis for the Statistical Model issues to be addressed in the future: entropy production treatment of gluons realistic space-time dynamics of parton source need improved data of identified hadrons at high p t

Steffen A. BassDynamics of Hadronization #16 The End

Steffen A. BassDynamics of Hadronization #17 transverse momentum p t time Connecting the dots … initial state pre-equilibrium QGP and hydrodynamic expansion hadronization hadronic phase and freeze-out shattered color-glas jet production hydrodynamic evolution jet quenching parton recombination fragmentation reco/SM? radial flow HBT ?!

Steffen A. BassDynamics of Hadronization #18 Parton Number Scaling of Elliptic Flow in the recombination regime, meson and baryon v 2 can be obtained from the parton v 2 in the following way:  neglecting quadratic and cubic terms, one finds a simple scaling law: