1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center.

Slides:



Advertisements
Similar presentations
Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Advertisements

Millimeter-Wavelength Observations of Circumstellar Disks and what they can tell us about planets A. Meredith Hughes Miller Fellow, UC Berkeley David Wilner,
Models of Disk Structure, Spectra and Evaporation Kees Dullemond, David Hollenbach, Inga Kamp, Paola DAlessio Disk accretion and surface density profiles.
The formation of stars and planets Day 3, Topic 3: Irradiated protoplanetary disks Lecture by: C.P. Dullemond.
Cumber01.ppt Thomas Henning Max-Planck-Institut für Astronomie, Heidelberg Protoplanetary Accretion Disks From 10 arcsec to arcsec HST.
Structure and Evolution of Protoplanetary Disks Carsten Dominik University of Amsterdam Radboud University Nijmegen.
Protostellar/planetary disk observations (and what they might imply) Lee Hartmann University of Michigan.
Disks - Variability, Gaps & Protoplanets A Practical Guide.
ATCA millimetre observations of young dusty disks Chris Wright, ARC ARF, Dave Lommen, Leiden University Tyler Bourke, Michael Burton, Annie Hughes,
Planet Formation Topic: Disk thermal structure Lecture by: C.P. Dullemond.
Francesco Trotta YERAC, Manchester Using mm observations to constrain variations of dust properties in circumstellar disks Advised by: Leonardo.
Disks around young Brown Dwarfs as critical testbeds for models of dust evolution: an investigation with ALMA Luca Ricci (CARMA Fellow, Caltech) Testi.
Resolved Inner Disks around Herbig Ae/Be Stars: Near-IR Interferometry with PTI Josh Eisner Collaborators: Ben Lane, Lynne Hillenbrand, Rachel Akeson,
1 Concluding Panel Al Glassgold Sienny Shang Jonathan Williams David Wilner.
Disc clearing conventional view: most stars are either rich in circumstellar diagnostics, e.g. Or devoid of same: intermediate states less common ==> RAPID.
Studying circumstellar envelopes with ALMA
SMA Observations of the Herbig Ae star AB Aur Nagayoshi Ohashi (ASIAA) Main Collaborators: S.-Y. Lin 1, J. Lim 2, P. Ho 3, M. Momose 4, M. Fukagawa 5 (1.
Gaspard Duchêne UC Berkeley – Obs. Grenoble Gaspard Duchêne - Circumstellar disks and planets - Kiel - May
CfA B.T. Draine: Dust in the submm1 Dust in the sub-mm or: what is  ? B. T. Draine Princeton University 2005 June 14.
Ge/Ay133 SED studies of disk “lifetimes” & Long wavelength studies of disks.
May 24, 2005ly 26, 2004 Astrobiology, McMaster University1 Protoplanetary Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics.
Constraining TW Hydra Disk Properties Chunhua Qi Harvard-Smithsonian Center for Astrophysics Collaborators : D.J. Wilner, P.T.P. Ho, T.L. Bourke, N. Calvet.
Disk evolution and Clearing P. D’Alessio (CRYA) C. Briceno (CIDA) J. Hernandez (CIDA & Michigan) L. Hartmann (Michigan) J. Muzerolle (Steward) A. Sicilia-Aguilar.
Leonardo Testi: (Sub)Millimeter Observations of Disks Around High-Mass Proto-Stars, SMA, Cambridge 14 Jun 2005 Disks around High-Mass (Proto-)Stars  From.
(pre-ALMA) The size scales are too small even for the largest current & near-term arrays. Spectroscopy to the rescue? How can we probe gas in the planet-forming.
1 Protoplanetary Disks: An Observer’s Perpsective David J. Wilner (Harvard-Smithsonian CfA) RAL 50th, November 13, 2008 Chunhua Qi Meredith Hughes Sean.
Results from the Keck Interferometer Commissioning YSO Project Rafael Millan-Gabet Caltech/Michelson Science Center Collaboration: PIs: John Monnier (U.
Circumstellar disks - a primer
Disks in the Sub-Stellar Regime Ray Jayawardhana University of Toronto.
Gas Emission From TW Hya: Origin of the Inner Hole Uma Gorti NASA Ames/SETI (Collaborators: David Hollenbach, Joan Najita, Ilaria Pascucci)
Monte Carlo Radiation Transfer in Protoplanetary Disks: Disk-Planet Interactions Kenneth Wood St Andrews.
A New “Radio Era” for Planet Forming Disks K. Teramura UH IfA David J. Wilner Harvard-Smithsonian Center for Astrophysics thanks to S. Andrews, C. Qi,
Multiwavelength Continuum Survey of Protostellar Disks in Ophiuchus Left: Submillimeter Array (SMA) aperture synthesis images of 870 μm (350 GHz) continuum.
Decoding Dusty Debris Disks AAAS, Februrary 2014 David J Wilner Harvard-Smithsonian Center for Astrophysics.
Molecular Hydrogen Emission from Protoplanetary Disks Hideko Nomura (Kobe Univ.), Tom Millar (UMIST) Modeling the structure, chemistry and appearance of.
The Science Case for Band 1 James Di Francesco Herzberg Institute of Astrophysics Victoria, BC, Canada.
The Origin of Gaps and Holes in Transition Disks Uma Gorti (SETI Institute) Collaborators: D. Hollenbach (SETI), G. D’Angelo (SETI/NASA Ames), C.P. Dullemond.
Imaging gaps in disks at mid-IR VLT VISIR image 8.6 PAH 11.3 PAH 19.8  m large grains => gap! Geers et al IRS48 -Gap seen in large grains, but NOT.
Peering into the Birthplaces of Solar Systems Atacama Large Millimeter/submillimeter Array Expanded Very Large Array Robert C. Byrd Green Bank Telescope.
1 Are we seen the effects of forming planets in primordial disks? Laura Ingleby, Melissa McClure, Lucia Adame, Zhaohuan Zhu, Lee Hartmann, Jeffrey Fogel,
Leonardo Testi: Intermediate-Mass Star Formation, IAU Symp 221, Sydney, July 23, 2003 Formation and Early Evolution of Intermediate-Mass Stars  Intermediate-Mass.
Basic Concepts An interferometer measures coherence in the electric field between pairs of points (baselines). Direction to source Because of the geometric.
Slide 1 (of 18) Circumstellar Disk Studies with the EVLA Carl Melis UCLA/LLNL In collaboration with: Gaspard Duchêne, Holly Maness, Patrick Palmer, and.
Next Gen VLA Observations of Protoplanetary Disks A. Meredith Hughes Wesleyan University ALMA (NRAO/ESO/NAOJ); C. Brogan, B. Saxton (NRAO/AUI/NSF)
A Submillimeter View of Protoplanetary Disks Sean Andrews University of Hawaii Institute for Astronomy Jonathan Williams & Rita Mann, UH IfA David Wilner,
Radial Dust Migration in the TW Hydra protoplanetary disk Sarah Maddison (Swinburne) Christophe Pinte, François Ménard, Wing-Fai Thi (IPAG Grenoble), Eric.
WITNESSING PLANET FORMATION WITH ALMA AND THE ELTs GMT TMTE-ELT Lucas Cieza, IfA/U. of Hawaii ABSTRACT: Over the last 15 years, astronomers have discovered.
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
Radial Dust Migration in the TW Hydra protoplanetary disk Sarah Maddison (Swinburne) Christophe Pinte, François Ménard, Wing-Fai Thi (IPAG Grenoble), Eric.
October 27, 2006US SKA, CfA1 The Square Kilometer Array and the “Cradle of Life” David Wilner (CfA)
Kenneth Wood St Andrews
X - R AY D IAGNOSTICS of G RAIN D EPLETION in M ATTER A CCRETING onto T T AURI S TARS Jeremy Drake (SAO), Paola Testa (MIT), Lee Hartman (SAO) Ne/O D IAGNOSTICS.
Protoplanetary disk evolution and clearing Paola D’Alessio (CRYA) J. Muzerolle (Steward) C. Briceno (CIDA) A. Sicilia-Aguilar (MPI) L. Adame (UNAM) IRS.
Evolved Protoplanetary Disks: The Multiwavelength Picture Aurora Sicilia-Aguilar Th. Henning, J. Bouwman, A. Juhász, V. Roccatagliata, C. Dullemond, L.
Millimeter Observations of the  Pic and AU Mic Debris Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics NASA/JPL-Caltech/T. Pyle S.Andrews,
Photoevaporation of Disks around Young Stars D. Hollenbach NASA Ames Research Center From Stars to Planets University of Florida April, 2007 Collaborators:
Formation of stellar systems: The evolution of SED (low mass star formation) Class 0 –The core is cold, 20-30K Class I –An infrared excess appears Class.
1 ALMA View of Dust Evolution: Making Planets and Decoding Debris David J. Wilner (CfA) Grain Growth  Protoplanets  Debris.
The Submillimeter Array 1 David J. Wilner
Protoplanetary and Debris Disks A. Meredith Hughes Wesleyan University.
Grain Growth and Substructure in Protoplanetary Disks David J. Wilner Harvard-Smithsonian Center for Astrophysics S. Corder (NRAO) A. Deller.
ALMA User Perspective: Galactic Studies
Spatially Resolved Millimeter Observations of Pre-Main Sequence Binaries Jenny Patience Thanks Merci.
ALMA does Circumstellar Disks
Pre-Main-Sequence of A stars
9-10 Aprile Osservatorio Astronomico di Capodimonte
Probing CO freeze-out and desorption in protoplanetary disks
SMA Observations of the Orion proplyds
Some considerations on disk models
Ge/Ay133 SED studies of disk “lifetimes” &
Presentation transcript:

1 Grain Growth in Protoplanetary Disks: the (Sub)Millimeter Sep 11, 2006 From Dust to Planetesimals, Ringberg David J. Wilner Harvard-Smithsonian Center for Astrophysics

2 Relevance of (Sub)Millimeter “vibrational” dust emission is dominant mechanism (thermal fluctuations in charge distribution) longest observable ’s for dust: 0.35 to 35 mm sensitive to cold dust, T<10’s of K low opacity, sample emission at all disk depths dependence of opacity diagnostic of dust properties (e.g. growth to millimeter size) no contrast issue with stellar photosphere major new facilities under construction: ALMA, eVLA PPV: Natta, Testi, Calvet, Henning, Waters & Wilner, astro-ph/

3 ISM  Protoplanetary Disks 0.85 mm Johnstone & Bally 1999 Williams, Andrews, Wilner 2005

4 T Tauri, Herbig Ae disks (d≤150 pc, 1-10 Myr) –integrated flux vs. (single dish bolometer) observe power law form, F ~ - , 2 <  < 3 –spatially resolved brightness (interferometer) HD Dent et al star dust F~ -2.5 (Sub)Millimeter Observables SMA Raman et al AU

5 mass opacity ( > 0.1 mm) power law form normalization, power law index , depend on dust properties: –composition –size distribution –geometry –… (see Draine 2006) Basics of “  ” Adams et al. 1988, following Draine & Lee 1984  ~ -2

6 flux density emitted by an element dA if  <<1 and h <<kT, then and  simply related to  F ~ -(2+  ) From  to 

7 Beckwith & Sargent (1991) Disk Dust appears Different early (sub)mm obs: disk ~1 vs. ISM  ~1.7 (e.g Weintraub et al. 1989, Adams et al. 1990, Beckwith et al. 1990, Beckwith & Sargent 1991, Mannings & Emerson 1994)  d =(  -2)(1+  )  0 1 2

8  ~1 Interpretations 1. changes in dust properties: –grain growth small, a << /2    =2 large, a >> /2    =0 mm size,  ~1 –  ~ -1 due to dust composition particle geometry 2. optically thick emission: –F ~ -2 (in part)   > (  - 2) Pollack et al mixture, compact, segregated spheres, n(a) ~ a -q, q=3.5 Calvet & D’Alessio 2001 a max =1 mm a max =10 cm

9 Testi et al. (2001) Dust Properties or Optical Depth? e.g. Herbig Ae stars UX Ori, CQ Tau: –  1.1-7mm ~ 2.0±0.3, 2.65±0.1 –  ~ 0 and large disk? any  and small disk?

10 Resolve Ambiguity observe spatial distribution of sub(mm) brightness arcsecond scales require interferometry –1.3, 3 mm: BIMA, OVRO, PdBI, NMA; ATCA, SMA –7 mm: VLA (thanks to CONACyT, MPIfR, NSF) longer : lever minimizes  uncertainty, probes larger dust; more concern about ionized gas

11 combine fluxes, images, improved disk models: –TW Hya –CQ Tau –7 (2) Herbig Ae stars –14 (10) Taurus PMS stars –10 (5) southern PMS stars –24 (20) Taurus/Oph PMS stars Interferometer Studies Calvet et al Testi et al Natta et al Rodmann et al Lommen et al Andrews & Williams 2007 T B vs. disk radius at 0.4, 3, and 7 mm, from two dust models of D’Alessio et al Calvet & D’Alessio 2001

12  =0.7  0.1 Calvet et al Grain Growth in TW Hya irradiated accretion disk model matches SED and VLA (and SMA) intensities from 10’s to R out ~ 200 AU shallow (sub)mm slope requires a max >> 1 mm observed 7 mm low brightness requires  << 1

13 Many (Barely) Resolved Disks VLA 7mm Rodmann et al ATCA 3mm Lommen et al VLA/PdBI/ OVRO Natta et al SMA 0.87/1.3mm Andrews & Williams

14  ≤1 for many/most resolved disks Many More  Determinations solid: Lommen et al dashed: Rodmann et al dotted: Natta et al. 2004

15  is an average, for any dust model –cannot disentangle all properties –  <1: hard to avoid substantial mass fraction a~O( ) Limitations/Complexity of  Natta & Testi 2004  1mm  1-7mm Natta & Testi 2004 a max 

16 TW Hya at 3.5 cm? disk model underpredicts 3.5 cm emission emission mechanism? –ionized protostellar wind if F cm  dM acc /dt, low by 10 3 x –spinning dust (Rafikov 2006) requires high (unrealistic) C fraction in nanoparticles/PAHs –synchrotron X-rays not stellar activity: dense, cool, and depleted  accretion (Stelzer & Schmitt 2004) –thermal dust,   const F ~ -2.6  0.1

17 Weidenschilling 1997Dullemond & Dominik 2005 Grain Size Evolution theory: growth, settling, destruction, … –depart from simple power law size distribution –create midplane population of ~cm size (timescale?)

18 TW Hya: Pebble Population toy model: small + ~cm size grains Wilner et al cm disk dust emission 1. not variable: weeks to years 2. resolved at arcsec scale, brightness only ~10 K 3. steep spectrum to 6 cm

19 no trend of  with stellar luminosity, mass, age tantalizing trends of  with mid-ir growth, settling indicators Any  Correlations? PPV: Natta et al Lommen et al Acke et al  

20 Remarks (sub)mm  <1: compelling evidence for growth –most of original dust mass in mm size particles no clear trends with stellar properties mm/cm sizes persist for Myrs –competition between agglomeration and collisions are the disks we can study in the (sub)mm the ones that will never form planets? –probably not: transition disks

21 Transition Disks: Inner Holes Spitzer IRS implies r~24 AU hole “... we remain skeptical of the existence of such a large central gap [5 AU] devoid of dust.” - Chiang & Goldreich (1999) Calvet et al Wilner et al. 2006

22 Transition Disks: Inner Holes mid-ir implies r~4 AU hole Calvet et al Hughes et al., in prep

23 Next Generation (Sub)mm Facilities 10 to 100x better sensitivity, resolution, image quality dust emission structure at 0.1 to 0.01 arcsec precision (sub)mm spectral index maps at the limits of ALMA Wolf & D’Angelo 2005

24 End