Linking Transitions (and Search for Superintruders) in the A  80 Region of Superdeformation Nilsson Conf. Lund, Sweden 17 June 2005 C. J. Chiara, D. G.

Slides:



Advertisements
Similar presentations
HIGS2 Workshop June 3-4, 2013 Nuclear Structure Studies at HI  S Henry R. Weller The HI  S Nuclear Physics Program.
Advertisements

Shell model studies along the N~126 line Zsolt Podolyák.
Structure of the ECEC candidate daughter 112 Cd P.E. Garrett University of Guelph TRIUMF Excellence Cluster “Universe”, Technische Universität München.
Electromagnetic Properties of
Oslo-07-TD Landscapes and fluctuations of two-dimensional rotational  - spectra – coupling between rotational and thermal motion Rare earth nuclei p resolved.
Proton Inelastic Scattering on Island-of-Inversion Nuclei Shin’ichiro Michimasa (CNS, Univ. of Tokyo) Phy. Rev. C 89, (2014)
Isomers and shape transitions in the n-rich A~190 region: Phil Walker University of Surrey prolate K isomers vs. oblate collective rotation the influence.
W. Udo Schröder, 2007 Spontaneous Fission 1. W. Udo Schröder, 2007 Spontaneous Fission 2 Liquid-Drop Oscillations Bohr&Mottelson II, Ch. 6 Surface & Coulomb.
High spin states in 136,137 La, 148 Ce and 105 Mo.
Structural Evolution in the (N,Z,I  ) Coordinate Frame for A~100 Paddy Regan* Dept. of Physics University of Surrey,UK
I. Bentley and S. Frauendorf Department of Physics University of Notre Dame, USA Calculation of the Wigner Term in the Binding Energies by Diagonalization.
Beyond Band Termination: Spectroscopy at Ultra-High Spin
Review of PHYSICAL REVIEW C 70, (2004) Stability of the N=50 shell gap in the neutron-rich Rb, Br, Se and Ge isotones Y. H. Zhang, LNL, Italy David.
Proton and Two-Proton Decay of a High-Spin Isomer in 94 Ag Ernst ROECKL GSI Darmstadt and Warsaw University.
Rotational bands in the rare-earth proton emitters and neighboring nuclei Darek Seweryniak Argonne National Laboratory PROCON Rotational landscape.
Search for  + EC and ECEC processes in 112 Sn A.S. Barabash 1), Ph. Hubert 2), A. Nachab 2) and V. Umatov 1) 1) ITEP, Moscow, Russia 2) CNBG, Gradignan,
Reiner Krücken - Yale University Reiner Krücken Wright Nuclear Structure Laboratory Yale University Why do we measure lifetimes ? The recoil-distance method.
横田 朗A 、 肥山 詠美子B 、 岡 眞A 東工大理工A、理研仁科セB
Structure of Be hyper-isotopes Masahiro ISAKA (RIKEN) Collaborators: H. Homma and M. Kimura (Hokkaido University)
The stability of triaxial superdeformed shape in odd-odd Lu isotopes Tu Ya.
Rotation and alignment of high-j orbitls in transfermium nuclei Dr. Xiao-tao He College of Material Science and Technology, Nanjing University of Aeronautics.
N~Z studies with Gretina and neutron detectors W. Reviol, D. Rudolph, D.G. Sarantites, C.J. Chiara, D. Seweryniak Washington U. / Lund U. / U. of Maryland.
Some Ideas for A Future Plan of Research at ATLAS Xiaofeng Wang The Riley Group at FSU.
High-spin structures in the 159 Lu nucleus Jilin University, China Institute of Atomic Energy 李聪博 The 13th National Nuclear Structure Conference of China.
1 In-Beam Observables Rauno Julin Department of Physics University of Jyväskylä JYFL Finland.
Search for the Exotic Wobbling Mode in 171 Re MIDN 1/C Eowyn Pedicini, USN Advisers: Professor Daryl Hartley LT Brian Cummings, USN.
Исследование запаздывающего деления и сосуществования форм в ядрах таллия, астата и золота (ИРИС, ПИЯФ — ISOLDE, CERN) A. E. Барзах, Ю. M. Волков, В. С.
Isovector scenario for nuclei near the N=Z line Anatoli Afanasjev S. Frauendorf Kai Neergard J. Sheikh.
Extended optical model analyses of elastic scattering and fusion cross sections for 6, 7 Li Pb systems at near-Coulomb-barrier energies by using.
JENDL/HE-2007 & On going Activities for JENDL-4 Japan Atomic Energy Agency S. Kunieda IAEA 1-st RCM of CRP on FENDL-3.0, 2-5 Dec Y. Watanabe Kyushu.
Low-lying dipole strength in unstable nuclei. References: N. Ryezayeva et al., Phys. Rev. Lett. 89 (2002) P. Adrich, A. Kimkiewicz et al., Phys.Rev.
Breakup effects of weakly bound nuclei on the fusion reactions C.J. Lin, H.Q. Zhang, F. Yang, Z.H. Liu, X.K. Wu, P. Zhou, C.L. Zhang, G.L. Zhang, G.P.
The Highs and Lows of the A~100 Region Paddy Regan Dept. of Physics, University of Surrey, UK and WNSL, Yale University, New Haven, CT
Core-excited states in 101 Sn Darek Seweryniak, ANL GS/FMA collaboration.
Recent Studies of Hypernuclei Formation with Electron Beams at MAMI Patrick Achenbach U Mainz Sept. 2o13.
The changing structure of 160 Er from low to ultrahigh spin J. Ollier Daresbury Laboratory.
Spontaneous symmetry breaking and rotational bands S. Frauendorf Department of Physics University of Notre Dame.
Image credit: NASA/Dana Berr. X-ray bursts - Close binary system: very dense neutron star and main sequence companion star - Matter accreted onto surface.
Recent improvements in the GSI fission model
Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PHYSICS In honor of Geirr Sletten at his 70 th birthday Stefan Frauendorf,
ShuangQuan Zhang School of Physics, Peking University Static chirality and chiral vibration of atomic nucleus in particle rotor model.
High spin structures as the probes of proton- neutron pairing. Anatoli Afanasjev Mississippi State University, USA Thanks to Stefan Frauendorf as a collaborator.
H.Sakurai Univ. of Tokyo Spectroscopy on light exotic nuclei.
P.G. Thirolf, D. Habs et al., LMU München
Shape evolution of highly deformed 75 Kr and projected shell model description Yang Yingchun Shanghai Jiao Tong University Shanghai, August 24, 2009.
Andreas Görgen INTC Shape Transitions and Coexistence in Neutron-Deficient Rare Earth Isotopes A. Görgen 1, F.L. Bello Garrote 1, P.A. Butler.
Fusion of light halo nuclei
A.V. Ramayya and J.H. Hamilton Vanderbilt University.
169 Re Future Triaxial Studies What role does the proton Fermi Surface have in the observation of wobbling? What role does the proton Fermi Surface have.
The i 13/2 Proton and j 15/2 Neutron Orbital and the SD Band in A~190 Region Xiao-tao He En-guang Zhao En-guang Zhao Institute of Theoretical Physics,
Strong tensor correlation in light nuclei with tensor-optimized antisymmetrized molecular dynamics (TOAMD) International symposium on “High-resolution.
Dipa Bandyopadhyay University of York
Exotic neutron-rich nuclei
Chiral Symmetry Breaking in Nuclei J.H. Hamilton 1, S.J. Zhu 1,2,3, Y.X. Luo 1,4,, A.V. Ramayya 1, J.O. Rasmussen 4, J.K. Hwang 1, S. Frauendorf 5, V.
Evidence for a new resonance S *(1380) with J P =1/2  JiaJun WU In collaboration with S. Dulat and B. S. ZOU.
A microscopic investigation on magnetic and antimagnetic rotations in 110 Cd Jing Peng Beijing Normal University Collaborators:P.W.Zhao, Jie Meng, and.
Exploring the alpha cluster structure of nuclei using the thick target inverse kinematics technique for multiple alpha decays. The 24 Mg case Marina Barbui.
多体共鳴状態の境界条件によって解析した3α共鳴状態の構造
Evolution of octupole collectivity in 221Th
Triple-Humped Fission Barrier and Clusterization in the Actinide Region A. Krasznahorkay Inst. of Nucl. Res. of the Hungarian Acad. of Sci. (ATOMKI) Debrecen,
Satoshi Adachi Research Center for Nuclear Physics (RCNP),
Isomers and shape transitions in the n-rich A~190 region:
Introduction Calculations for the N=7 isotones Summary
Quasi-continuum studies in superdeformed 151Tb and 196Pb nuclei
Quasi-continuum studies in superdeformed 151Tb and 196Pb nuclei
In-medium properties of the omega meson from a measurement of
Rotation and alignment of high-j orbitls in transfermium nuclei
Nuclei at the Extremes of Spin: The Superdeformed Bands in 131,132Ce
Shape-coexistence enhanced by multi-quasiparticle excitations in A~190 mass region 石跃 北京大学 导师:许甫荣教授
Department of Physics, Sichuan University
Presentation transcript:

Linking Transitions (and Search for Superintruders) in the A  80 Region of Superdeformation Nilsson Conf. Lund, Sweden 17 June 2005 C. J. Chiara, D. G. Sarantites, M. Montero, J. O’Brien, O. L. Pechenaya, and W. Reviol, Washington University R. M. Clark, P. Fallon, A. Görgen, A. O. Macchiavelli, and D. Ward, Lawrence Berkeley National Laboratory W. Satuła, University of Warsaw Y. R. Shimizu, Kyushu University

SD regionsSD regions A  40 (linked) A  60 (linked) A  190 (linked) A  80 (not linked!) B. Singh, R. Zywina, R.B. Firestone, Nucl. Data Sheets 97, 241 (2002) F. Lerma et al., PRC 67, (2003) 84 Zr (linked) A  130 TSD (linked) A  150 (linked)

140-MeV 32 S mg/cm 2 58 Ni  84 Zr +  2p Gammasphere [102 Ge detectors] Microball [95 CsI(Tl) detectors] for charged particle detection;  p  80%,    70% Total of 2.2  10 9 events of fold 5 or higher over 6 days. Experimental details

Double-gated spectra of 84 Zr links spectraspectra

84Zr lev.sch.84Zr lev.sch. I 0  = 25 -  E1  M1/E2  E1

Compare with calculations using Cranked Strutinsky + Lipkin-Nogami pairing 5 2  5 1 configuration previously assigned to SD1 based on Q t —now compare E x, I  as well: CSLNCSLN E x (near ND-SD crossing) spin (except at alignments) parity

Depopulation of the SD well SD1 in 84 Zr has weak decays to ND states, similar to the A=150,190 SD bands. 84 Zr 152 Dy *192 Pb † * T.Lauritsen, PRL88, (2002) † A.N.Wilson, PRL90, (2003) B(E1) ~10 -6 W.u.~10 -6 W.u. ~ W.u.

Weak decay-out explored with several statistical models, e.g.: E.Vigezzi et al., PLB249,163 (1990) J.-z.Gu and H.A.Weidenmüller, NPA660, 197 (1999) D.M.Cardamone et al., PRL91, (2003) Each relates  S,  N, d, F S with spreading width  . Compare 84 Zr with results in A.N.Wilson, Prog. Theor. Phys. (Kyoto), Suppl. 154, 138 (2004) : nuclideII FSFS   /  S   [eV] 192 Pb   Pb   Hg  Dy  Zr25 - < 0.2 > 1.1  10 5 >  B(E1) [W.u.] 5        — stat’lstat’l

Tunneling paths and barriers Calculate potential energy surfaces for fixed spins. Determine least-action path from SD min to ND well. Get barrier height in direction of path. [K.Yoshida et al., NPA696, 85 (2001) and refs. therein.] Compare 152 Dy and 84 Zr surfaces….

152Dy PES152Dy PES

Below the decay-out spin in 152 Dy!

84Zr PES84Zr PES

Below the decay-out spin in 84 Zr!

Barrier heights calculated along least-action paths from fixed-spin potential surfaces, as in K.Yoshida et al., NPA696, 85 (2001). barriersbarriers

Summary “Full” characterization of an A  80 SD band: E x, I , Q t, B(  ) [several neighbors studied too, but no luck linking!] Results are consistent with CS-LN calculations for 5 2  5 1 configuration [esp. E x (I) in crossing region] 84 Zr SD1 has eclectic properties; similar to:  152 Dy [spin, energy, B(E1)]  192 Pb [strength of SD-ND coupling]  A  60,130 regions [potential barriers] HF+SLy4 calcs at  I  =25 reveal many configs at different deformations with similar energies  supports PES picture

C. J. Chiara, D. G. Sarantites, M. Montero, J. O’Brien, O. L. Pechenaya, and W. Reviol, Washington U. R. M. Clark, P. Fallon, A. Görgen, A. O. Macchiavelli, and D. Ward, LBNL Theoretical support from W.Satuła, U. of Warsaw and Y.R.Shimizu, Kyushu U. C. J. Chiara, D. G. Sarantites, M. Montero, J. O’Brien, O. L. Pechenaya, and W. Reviol, Washington U. R. M. Clark, P. Fallon, A. Görgen, A. O. Macchiavelli, and D. Ward, LBNL Theoretical support from W.Satuła, U. of Warsaw and Y.R.Shimizu, Kyushu U. The EndThe End