First results from silicon and diamond sensors K. Afanasiev 1, I. Emeliantchik 1, E. Kouznetsova 2, W. Lohmann 2, W. Lange 2 1 NC PHEP, Minsk 2 DESY Zeuthen.

Slides:



Advertisements
Similar presentations
Design Studies and Sensor Test for the Beam Calorimeter of the ILC Detector E. Kuznetsova DESY Zeuthen.
Advertisements

17-May-15Actual problems of microworld physics. Gomel Investigation of radiation hard sensors for the ILC forward calorimeter K. Afanaciev, Ch. Grah,
17-May-15Actual problems of microworld physics. Gomel Investigation of radiation hard sensor materials K. Afanaciev on behalf of FCAL collaboration.
17-May-15FCAL collaboration meeting. Krakow.. Radiation hardness of GaAs Sensors K. Afanaciev, Ch. Grah, A. Ignatenko, W. Lange, W. Lohmann, M. Ohlerich.
17-May-15FCAL collaboration workshop, Status of sensor R&D in Minsk K. Afanaciev, M. Baturitsky, I. Emeliantchik, A. Ignatenko, A. Litomin, V. Shevtsov.
DIAMOND ACTIVITIES DESY Zeuthen Wolfgang Lange. MOTIVATION and PEOPLE: Calorimetry in an environment with high radiation doses (TESLA beam cal) Beam diagnostics.
Investigation of the properties of diamond radiation detectors
Ionization. Measuring Ions A beam of charged particles will ionize gas. –Particle energy E –Chamber area A An applied field will cause ions and electrons.
Design and test of a high-speed beam monitor for hardon therapy H. Pernegger on behalf of Erich Griesmayer Fachhochschule Wr. Neustadt/Fotec Austria (H.
TOF at 10ps with SiGe BJT Amplifiers
Electronics for first beam tests of diamond sensors Presented by: Igor Emeliantchik NC PHEP, Minsk:Konstantin Afanaciev, Igor Emeliantchik Alexander Ignatenko.
Luminosity and beam calorimeter report E. Kouznetsova, DESY.
Why silicon detectors? Main characteristics of silicon detectors: Small band gap (E g = 1.12 V)  good resolution in the deposited energy  3.6 eV of deposited.
August 2005Snowmass Workshop IP Instrumentation Wolfgang Lohmann, DESY Measurement of: Luminosity (precise and fast) Energy Polarisation.
August 2005Snowmass Workshop Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Semiconductor detectors An introduction to semiconductor detector physics as applied to particle physics.
11 th RD50 Workshop, CERN Nov Results with thin and standard p-type detectors after heavy neutron irradiation G. Casse.
Current Status of Diamond Sensors R&D in Minsk Group FCAL Collaboration Institute of Nuclear Physics PAN February 12-13, 2006, Krakow, Poland.
Radiation Hard Sensors for the Beam Calorimeter of the ILC C. Grah 1, R. Heller 1, H. Henschel 1, W. Lange 1, W. Lohmann 1, M. Ohlerich 1,3, R. Schmidt.
FCAL R&D in Minsk Group: Sensors and Electronics FCAL Collaboration MPI Munich October 17, 2006, Munich, Germany Presented by Igor Emeliantchik.
22 December 20143rd FCAL Hardware WG Meeting 1 BeamCal sensors overview Sergej Schuwalow, DESY Hamburg.
3rd NoRDHia 1 TITLE INVESTIGATION OF A SINGLE CRYSTAL DIAMOND SENSOR AND ITS APPLICATION IN BACKGROUND MEASUREMENTS FOR HERA Wolfgang Lange,
NEW COMMENTS TO ILC BEAM ENERGY MEASUREMENTS BASED ON SYNCHROTRON RADIATION FROM MAGNETIC SPECTROMETER E.Syresin, B. Zalikhanov-DLNP, JINR R. Makarov-MSU.
22 October 2009FCAL workshop, Geneve1 Polarization effects in the radiation damaged scCVD Diamond detectors Sergej Schuwalow, DESY Zeuthen On behalf of.
14 December nd CARAT Workshop, GSI, Darmstadt1 Radiation hardness studies with relativistic electrons Sergej Schuwalow, Uni-HH / DESY On behalf of.
Calorimeter technologies for forward region instrumentation K. Afanaciev 2, R. Dollan 1 V. Drugakov 2, C. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
High Dose Irradiation of Possible FCAL Sensors at the S-DALINAC Ch.Grah Physics and Detector Meeting DESY HH,
March 2004LCWS Stanford Instrumentation of the Very Forward Region of a Linear Collider Detector Wolfgang Lohmann, DESY.
Diamond Detector Developments at DESY and Measurements on homoepitaxial sCVD Diamond Christian Grah - DESY Zeuthen 2 nd NoRHDia Workshop at GSI Thursday,
CVD Diamond Sensor Studies for the Beam Calorimeter of the ILC Detector K. Afanaciev 2, I.Emelianchik 2, Ch. Grah 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C. Grah 1, U. Harder 1, H. Henschel 1, E. Kouznetsova 1, W. Lange 1, W. Lohmann 1, M.
2. December 2005Valencia Workshop Very Forward Region Instrumentation Wolfgang Lohmann, DESY Basic functions: - Hermeticity to small polar angles - Fast.
Diamond Sensor Diamond Sensor for Particle Detection Maria Hempel Beam Impact Meeting Geneva,
July 2006ALCWS Vancouver Very Forward Instrumentation of the Linear Collider Detector On behalf of the Wolfgang Lohmann, DESY.
3rd NoRDHia 1 TITLE INVESTIGATION OF DIAMOND SAMPLES UNDER HIGH DOSES OF ELECTROMAGNETIC IRRADIATION (at S-DALINAC) Wolfgang Lange, DESY Zeuthen.
Investigation of effects associated with electrical charging of fused silica test mass V. Mitrofanov, L. Prokhorov, K. Tokmakov Moscow State University.
SiPM for CBM Michael Danilov ITEP(Moscow) Muon Detector and/or Preshower CBM Meeting ITEP
Electrical features of diamond sensors D. Drachenberg, E. Kouznetsova, W. Lange, W. Lohmann.
We are investigating the dependence of efficiency of diamond detector samples on accumulated radiation dose. We have Sr 90  -source of known activity.
A Prototype Diamond Detector for the Compton Polarimeter in Jefferson lab, Hall C Medium Energy Physics Group Amrendra.
CVD Diamond Sensors for the Very Forward Calorimeter of a Linear Collider Detector K. Afanaciev, E. Kouznetsova, W. Lange, W. Lohmann.
Albuquerque 1 Wolfgang Lohmann DESY On behalf of the FCAL collaboration Forward Region Instrumentation.
Polycrystalline CVD Diamonds for the Beam Calorimeter of the ILC C.Grah ILC ECFA 2006 Valencia, 9 th November 2006.
October DESY PRC Instrumentation of the Very Forward Region of a Linear Collider Detector Univ. of Colorado, Boulder, AGH Univ., INP & Jagiell.
CERN PH MIC group P. Jarron 07 November 06 GIGATRACKER Meeting Gigatracker Front end based on ultra fast NINO circuit P. Jarron, G. Anelli, F. Anghinolfi,
CNS CVD Diamond S. Michimasa. Properties of diamond Extreme mechanical hardness and extreme high thermal conductivity Broad optical transparency in region.
Philip Bambade, Pierre Barillon, Frédéric Bogard, Selma Conforti, Patrick Cornebise, Shan Liu, Illia Khvastunov Journée PHIL
C. Weiss 1, 2, G. Badurek 2, E. Berthoumieux 3, M. Calviani 1, E. Chiaveri 1, D. Dobos 1, E. Griesmayer 4,C. Guerrero 1,E. Jericha 2, F. Kaeppeler 5, H.
Neutrinoless double beta decay (0  ) CdTe Semico nductor Band gap (eV) Electron mobility (cm 2 /V/s) Hole mobility (cm 2 /V/s) Density (g/cm 3.
I nstrumentation of the F orward R egion Collaboration High precision design ECFA - Durham2004 University of Colorado AGH University, Cracow I nstitute.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
Performance of the PHENIX NCC Prototype Michael Merkin Skobeltyn Institute of Nuclear Physics Moscow State University.
Diamond – Tungsten Calorimeter LCAL-group : K. Afanasiev, V. Drugakov, E. Kouznetsova, W. Lohmann, A. Stahl Workshop on Forward Calorimetry and Luminosity.
Results achieved so far to improve the RPC rate capability
Radiation hardness tests of GaAs and Si sensors at JINR S. M
Outline Review Material Properties Band gap Absorption Coefficient Mobility.
Kröhnke, 14 November 2012 FCAL Collaboration Meeting Sergej Schuwalow
Testbeam measurements with diamond sensors. Preliminary results
Panagiotis Kokkas Univ. of Ioannina
Investigation of diamond sensors for calorimetry
FCPPL, Clermont-Ferrand , 8-10 April, 2014
大強度
Diamond Research Status in Minsk Group
Testbeam Results for GaAs and Radiation-hard Si Sensors
CCE measurements with Epi-Si detectors
Semiconductor Detectors
Luminosity and beam calorimeter report E. Kouznetsova, DESY
CVD Diamond Sensors for the Very Forward Calorimeter of a Linear Collider Detector K. Afanaciev, D. Drachenberg, E. Kouznetsova, W. Lange, W. Lohmann.
Why silicon detectors? Main characteristics of silicon detectors:
Diamond Measurements in Zeuthen
Presentation transcript:

First results from silicon and diamond sensors K. Afanasiev 1, I. Emeliantchik 1, E. Kouznetsova 2, W. Lohmann 2, W. Lange 2 1 NC PHEP, Minsk 2 DESY Zeuthen

2 CVD diamond : Radiation resistant ( up to 10 MGy) Fast (charge collection time ~ 10 ps) Low dielectric constant => Low capacitance but Low signal : < ½ signal from silicon Charge collection distance d c :

3 Si - Diamond comparison SiliconCVD-Diamond Resistivity,  ×cm 2.3× Carrier density, cm -3 15×10 10 <10 3 Dielectric constant Capacitance (1 cm 2, 500  m), pF 3517 Breakdown field, V/cm3× Energy/(e - -h pair), eV3.613 Mobility, cm 2 /(V×s) e-e h Average e - -h number per 100  m (for MIP) Energy deposition per 100  m (for MIP), keV 4050 Charge collection distance d c,  m ; d c = f(l)

4 Test Set Up 5 mm SC. 2 SC. 1 Si/diamond lead (for cosmics only) Sr/cosmics & Gate PA discr delay ADC

5 Test Set Up

6 Electronics calibration PA : VV 50-3 (charge sensitive) ADC : CAEN V bit ENC = 700 e (diamond sensor connected ) gen 50 1 pF CwCw C v = g·C f CfCf

7 Sr source + triggering system 5 mm 90 Sr SC. 2 SC. 1 Si/diamond (300  m) &

8 Sr source + triggering system E mip = 1.25 MeV dE/dx = 3.56 MeV/cm R = 0.3 cm E mip = 1.5 MeV dE/dx = 5.57 MeV/cm R = 0.2 cm => ~mip - signal

9 Signals from 90 Sr – silicon : Si (mip)

10 Signals from 90 Sr – diamond : Selftriggering: discr delay in gate ADC PA diamond Sr Diamond (noise) Diamond (whole  - spectra)

11 Noise level is not optimal for signal/noise separation Possible solutions :  Noise optimization of the existing preamplifier or  Switch to Amptek A250:  New trigger scintillator matching the size of the sensor Problems and further steps : Expected noise ≤ 350 e

12 Fraunhofer Institute (Freiburg) :  (12 x 12 mm)  300 and 200  m  Different surface treatments Prokhorov Institute (Moscow) (Dubna group) Further steps : New diamond samples :