Sections 5.1 and 5.2 Review and Preview and Random Variables.

Slides:



Advertisements
Similar presentations
Lecture Slides Elementary Statistics Eleventh Edition
Advertisements

Review and Preview and Random Variables
Overview Fundamentals
Random Variables A random variable is a variable (usually we use x), that has a single numerical value, determined by chance, for each outcome of a procedure.
Types of Random Variables Discrete random variables are ones that have a finite or countable number of possible outcomes (like number of heads when flipping.
probability distributions
Sections 4.1 and 4.2 Overview Random Variables. PROBABILITY DISTRIBUTIONS This chapter will deal with the construction of probability distributions by.
Chapter 4 Probability Distributions
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Section 5-2.
Discrete probability distributions Chapter 6 - Sullivan
Slide 1 Statistics Workshop Tutorial 4 Probability Probability Distributions.
Lecture Slides Elementary Statistics Twelfth Edition
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Created by Tom Wegleitner, Centreville, Virginia Edited by.
Slide 1 Statistics Workshop Tutorial 7 Discrete Random Variables Binomial Distributions.
Chapter 6 Discrete Probability Distributions.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Discrete Distributions Chapter 5.
Random Variables A random variable A variable (usually x ) that has a single numerical value (determined by chance) for each outcome of an experiment A.
Objective: Objective: Use experimental and theoretical distributions to make judgments about the likelihood of various outcomes in uncertain situations.
Section 5.2 Random Variables.
5-2 Probability Distributions This section introduces the important concept of a probability distribution, which gives the probability for each value of.
McGraw-Hill/IrwinCopyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved. Chapter 4 and 5 Probability and Discrete Random Variables.
1 Overview This chapter will deal with the construction of probability distributions by combining the methods of Chapter 2 with the those of Chapter 4.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
Chapter 5 Probability Distributions
Chapter 6 Random Variables. Make a Sample Space for Tossing a Fair Coin 3 times.
Statistics 5.2.
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Random Variables  Random variable a variable (typically represented by x)
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Review and Preview This chapter combines the methods of descriptive statistics presented in.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Chapter 5 Discrete Probability Distributions 5-1 Review and Preview 5-2.
Slide 1 Copyright © 2004 Pearson Education, Inc..
Section Copyright © 2014, 2012, 2010 Pearson Education, Inc. Lecture Slides Elementary Statistics Twelfth Edition and the Triola Statistics Series.
1 Chapter 4. Section 4-1 and 4-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
Chapter 4 Probability Distributions
Sullivan – Fundamentals of Statistics – 2 nd Edition – Chapter 11 Section 1 – Slide 1 of 34 Chapter 11 Section 1 Random Variables.
Slide Slide 1 Copyright © 2007 Pearson Education, Inc Publishing as Pearson Addison-Wesley. Lecture Slides Elementary Statistics Tenth Edition and the.
1 Chapter 4. Section 4-1 and 4-2. Triola, Elementary Statistics, Eighth Edition. Copyright Addison Wesley Longman M ARIO F. T RIOLA E IGHTH E DITION.
DISCRETE PROBABILITY DISTRIBUTIONS
Chapter 5: The Binomial Probability Distribution and Related Topics Section 1: Introduction to Random Variables and Probability Distributions.
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Section 5-2 Random Variables.
Discrete Random Variables. Numerical Outcomes Consider associating a numerical value with each sample point in a sample space. (1,1) (1,2) (1,3) (1,4)
1 Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Random Variables  Random variable a variable (typically represented by x)
Copyright © 2010, 2007, 2004 Pearson Education, Inc. All Rights Reserved. Section 5-1 Review and Preview.
AP STATISTICS Section 7.1 Random Variables. Objective: To be able to recognize discrete and continuous random variables and calculate probabilities using.
Chapter 5 Discrete Random Variables Probability Distributions
Discrete Random Variables
Copyright © 2010, 2007, 2004 Pearson Education, Inc. Lecture Slides Elementary Statistics Eleventh Edition and the Triola Statistics Series by.
Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions 5-4 Mean, Variance and Standard Deviation.
Copyright © 1998, Triola, Elementary Statistics Addison Wesley Longman 1 Probability Distributions Chapter 4 M A R I O F. T R I O L A Copyright © 1998,
Week 5 Discrete Random Variables and Probability Distributions Statistics for Social Sciences.
Slide 1 Copyright © 2004 Pearson Education, Inc. Chapter 5 Probability Distributions 5-1 Overview 5-2 Random Variables 5-3 Binomial Probability Distributions.
Probability Distributions ( 확률분포 ) Chapter 5. 2 모든 가능한 ( 확률 ) 변수의 값에 대해 확률을 할당하는 체계 X 가 1, 2, …, 6 의 값을 가진다면 이 6 개 변수 값에 확률을 할당하는 함수 Definition.
Discrete Random Variables Section 6.1. Objectives Distinguish between discrete and continuous random variables Identify discrete probability distributions.
Section 5-1 Review and Preview.
Lecture Slides Elementary Statistics Twelfth Edition
Probability Distributions
Lecture Slides Elementary Statistics Eleventh Edition
Chapter 4 Probability Distributions
Chapter 5 Probability 5.2 Random Variables 5.3 Binomial Distribution
Section 5.1 Review and Preview.
Lecture Slides Elementary Statistics Eleventh Edition
Elementary Statistics
CHAPTER 6 Random Variables
Overview probability distributions
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Twelfth Edition
Lecture Slides Elementary Statistics Tenth Edition
Random Variables Random variable a variable (typically represented by x) that takes a numerical value by chance. For each outcome of a procedure, x takes.
Lecture Slides Essentials of Statistics 5th Edition
Lecture Slides Essentials of Statistics 5th Edition
Presentation transcript:

Sections 5.1 and 5.2 Review and Preview and Random Variables

PROBABILITY DISTRIBUTIONS This chapter will deal with the construction of probability distributions by combining the methods of Chapters 2 and 3 with the those of Chapter 4. Probability Distributions will describe what will probably happen instead of what actually did happen.

COMBINING DESCRIPTIVE METHODS AND PROBABILITIES In this chapter we will construct probability distributions by presenting possible outcomes along with the relative frequencies we expect.

RANDOM VARIABLES AND PROBABILITY DISTRIBUTIONS A random variable is a variable (typically represented by x) that has a single numerical value, determined by chance, for each outcome of a procedure. A probability distribution is a graph, table, or formula that gives the probability for each value of a random variable.

EXAMPLES 1.Suppose you toss a coin three times. Let x be the total number of heads. Make a table for the probability distribution of x. 2.Suppose you throw a pair of dice. Let x be the sum of the numbers on the dice. Make a table for the probability distribution of x.

SAMPLE SPACE FOR ROLLING A PAIR OF DICE

DISCRETE AND CONTINUOUS RANDOM VARIABLES A discrete random variable has either a finite number of values or a countable number of values, where “countable” refers to the fact that there might be infinitely many values, but they can be associated with a counting process. A continuous random variable has infinitely many values, and those values can be associated with measurements on a continuous scale in such a way that there are no gaps or interruptions.

EXAMPLES 1.Let x be the number of cars that travel through McDonald’s drive-through in the next hour. 2.Let x be the speed of the next car that passes a state trooper. 3.Let x be the number of As earned in a section of statistics with 15 students enrolled. Determine whether the following are discrete or continuous random variables.

PROBABILITY HISTORGRAM A probability histogram is like a relative frequency histogram with probabilities instead of relative frequencies.

EXAMPLES 1.Suppose you toss a coin three times. Let x be the total number of heads. Draw a probability histogram for x. 2.Suppose you throw a pair of dice. Let x be the sum of the numbers on the dice. Draw a probability histogram for x.

REQUIREMENTS FOR A PROBABILITY DISTRIBUTION ΣP(x) = 1where x assumes all possible values 0 ≤ P(x) ≤ 1for every individual value of x

EXAMPLES xP(x)P(x) −0.07 xP(x)P(x) Determine if the following are probability distributions xP(x)P(x) (a)(b)(c)

MEAN, VARIANCE, AND STANDARD DEVIATION Mean of a Prob. Dist. Variance of a Prob. Dist. Standard Deviation of a Prob. Dist.

1.Enter values for random variable in L 1. 2.Enter the probabilities for the random variables in L 2. 3.Run “1-VarStat L 1, L 2 ” 4.The mean will be. The standard deviation will be σx. To get the variance, square σx. FINDIND MEAN, VARIANCE, AND STANDARD DEVIATION WITH TI-83/84 CALCULATOR

ROUND-OFF RULE FOR μ, σ, AND σ 2 Round results by carrying one more decimal place than the number of decimal places used for the random variable x.

MINIMUM AND MAXIMUM USUAL VALUES Recall: minimum usual value = μ − 2σ maximum usual value = μ + 2σ

EXAMPLE Use the range rule of thumb to determine the unusual values for rolling a pair of dice.

IDENTIFYING UNUSUAL RESULTS USING PROBABILITIES Rare Event Rule: If, under a given assumption the probability of a particular observed event is extremely small, we conclude that the assumption is probably not correct. Unusually High: x successes among n trials is an unusually high number of successes if P(x or more) is very small (such as 0.05 or less). Unusually Low: x successes among n trials is an unusually low number of successes if P(x or fewer) is very small (such as 0.05 or less).

EXAMPLE Consider the procedure of rolling a pair of dice five times and letting x be the number of times that “7” occurs. The table below describes the probability distribution. (a)Find the value of the missing probability. (b)Would it be unusual to roll a pair of dice and get at least three “7s”? xP(x)P(x) ?

EXPECTED VALUE The expected value of a discrete random variable is denoted by E, and it represents the average value of the outcomes. It is obtained by find the value of Σ[x · P(x)]. E = Σ[x · P(x)]

EXAMPLE When you give the Venetian casino in Las Vegas $5 for a bet on the number 7 in roulette, you have 37/38 probability of losing $5 and you have a 1/38 probability of making a net gain of $175. (The prize in $180, including you $5 bet, so the net gain is $175.) If you bet $5 that the outcome is an odd number the probability of losing $5 is 20/38 and probability of making a net gain of $5 is 18/38. (If you bet $5 on an odd number and win, you are given $10 that included your bet, so the net gain is $5.) (a)If you bet $5 on the number 7, what is your expected value? (b)If you bet $5 that the outcome is an odd number, what is your expected value? (c)Which of these options is best: bet on 7, bet on an odd number, or don’t bet? Why?