1 Geant4 Simulation :MCP PET 4’’(102mm) Scintillator ( LSO) 4’’(102mm) 10mm Glass( Borosilicate) PhotocathodeI(Carbon) Space(Vacuum) MCP(Alumina) Space(Vacumm)

Slides:



Advertisements
Similar presentations
Analysis for J2 chamber Yousuke Kataoka (University of Tokyo) Atsuhiko Ochi, Yuki Edo (Kobe University) 11 / 12 / 2012 Micromegas weekly meeting 1.
Advertisements

1 Continuous Scintillator Slab with Microchannel Plate PMT for PET Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat 2, Fukun Tang 2,
The Factors that Limit Time Resolution in Photodetectors, Workshop, University of Chicago, April 2011 What is known experimentally about timing determinants.
1 MCP PET Simulation # of photon detected at photocathode 2. Efficiency & Material effect # of generated photon at 511keV 26000/MeV * =
1 A Design of PET detector using Microchannel Plate PMT with Transmission Line Readout Heejong Kim 1, Chien-Min Kao 1, Chin-Tu Chen 1, Jean-Francois Genat.
1 KEK Beam Test Analysis Hideyuki Sakamoto 15 th MICE Collaboration Meeting 10 st June,2006.
June/5/20081 Electronics development for fast-timing PET detectors: The multi-threshold discriminator Time of Flight PET system Contents 1. Introduction.
VELO Testbeam 2006 Tracking and Triggering Jianchun (JC) Wang Syracuse University VELO Testbeam and Software Review 09/05/2005 List of tasks 1)L0 trigger.
The UC Simulation of Picosecond Detectors Pico-Sec Timing Hardware Workshop November 18, 2005 Timothy Credo.
Cosmic Ray Test Stand with Scintillating Cells for Digital Hadron Calorimeter As of 9am 05/28/2003.
Time over Threshold Electronics for Neutrino Telescopy George Bourlis + multiplicity.
Institute for Safety Research Dávid Légrády IP-EUROTRANS ITC2 Development of a Neutron Time-of-Flight Source at the ELBE Accelerator ELBE Neutron source.
Report on SiPM Tests SiPM as a alternative photo detector to replace PMT. Qauntify basic characteristics Measure Energy, Timing resolution Develop simulation.
Diana Parno – July 22, 2008 January PREx Test Run: Compton Photon Analysis Diana Parno Carnegie Mellon University HAPPEX Collaboration Meeting.
Monte Carlo Comparison of RPCs and Liquid Scintillator R. Ray 5/14/04  RPCs with 1-dimensional readout (generated by RR) and liquid scintillator with.
A Study of Time over Threshold (TOT) Technique for Plastic Scintillator Counter 高能物理研究所 吴金杰.
1 ALICE T0 detector W.H.Trzaska (on behalf of T0 Group) LHCC Comprehensive Review, March 2003.
Electromagnetic Calorimeter for HADES at SIS100: MAMI and CERN test results Lead-glass modules Tests -  beam at MAMI energy resolution -  - /e - beam.
TOP counter overview and issues K. Inami (Nagoya university) 2008/7/3-4 2 nd open meeting for proto-collaboration - Overview - Design - Performance - Prototype.
NA62 Gigatracker Working Group Meeting 23 March 2010 Massimiliano Fiorini CERN.
Lead Fluoride Calorimeter for Deeply Virtual Compton Scattering in Hall A Alexandre Camsonne Hall A Jefferson Laboratory October 31 st 2008.
MEG Run 2008 液体キセノンガンマ線検出器 東京大学 素粒子物理国際研究セン ター 西村 康宏、 他 MEG コラボレー ション 2008 年秋季物理学会@山形大学小白川キャンパス.
Apollo Go, NCU Taiwan BES III Luminosity Monitor Apollo Go National Central University, Taiwan September 16, 2002.
Experimental Nuclear Physics Some Recent Activities 1.Development of a detector for low-energy neutrons a. Hardware -- A Novel Design Idea b. Measure the.
PMT Readout and Floor Triggering Charge estimation using the times over the thresholds Event Building and Triggering + multiplicity George Bourlis.
7/28/2003DC/EC Review Aerogel Read out Electronics K. Ozawa, N. Kurihara, M. Inaba, H. Masui T. Sakaguchi, T. Matsumoto.
The development of the readout ASIC for the pair-monitor with SOI technology ~irradiation test~ Yutaro Sato Tohoku Univ. 29 th Mar  Introduction.
Timing Studies of Hamamatsu MPPCs and MEPhI SiPM Samples Bob Wagner, Gary Drake, Patrick DeLurgio Argonne National Laboratory Qingguo Xie Department of.
Test beam preliminary results D. Di Filippo, P. Massarotti, T. Spadaro.
FSC Status and Plans Pavel Semenov IHEP, Protvino on behalf of the IHEP PANDA group PANDA Russia workshop, ITEP 27 April 2010.
MCP-PET: Geant4 Simulation Geometry Implementations 1. Similar to the last report (polished surface). Scintillator : LSO, LaBr3 # of layers : 5 -> 4 Area.
00 Cooler CSB Direct or Extra Photons in d+d  0 Andrew Bacher for the CSB Cooler Collaboration ECT Trento, June 2005.
Time and amplitude calibration of the Baikal-GVD neutrino telescope Vladimir Aynutdinov, Bair Shaybonov for Baikal collaboration S Vladimir Aynutdinov,
The Detector Performance Study for the Barrel Section of the ATLAS Semiconductor Tracker (SCT) with Cosmic Rays Yoshikazu Nagai (Univ. of Tsukuba) For.
Jean-François Genat Fast Timing Workshop June 8-10th 2015 FZU Prague Timing Methods with Fast Integrated Technologies 1.
1 A two-phase Ar avalanche detector with CsI photocathode: first results A. Bondar, A. Buzulutskov, A. Grebenuk, D. Pavlyuchenko, R. Snopkov, Y. Tikhonov.
A Multi-Threshold Method for TOF-PET Signal Processing Heejong Kim 1, Chien-Min Kao 1, Qingguo Xie 1, Chin-Tu Chen 1, Octavia Biris 2, Jialin Lin 2, Fukun.
Seoul National University Han-wool Ju CUNPA Kick-off Meeting Aug.22-23, 2013.
The Results of 10 Additional PMT Tests 1.Timing of afterpulse 2.ADC readout 3. Conclusion TTU HEP Group Meeting, Apr. 14, 2004.
P. Lecoq CERN2 February ENVISION WP2 Meeting CERN Group contribution to ENVISION WP2 Paul Lecoq CERN, Geneva.
The Status of Hyperball-J Akio Sasaki Dept. of Phys. Tohoku Univ. 23/9/2011.
PPAC Jonathan Olson University of Iowa HCAL November 11-13, 2004.
Performance of scintillation pixel detectors with MPPC read-out and digital signal processing Mihael Makek with D. Bosnar, V. Gačić, L. Pavelić, P. Šenjug.
Fabio, Francesco, Francesco and Nicola INFN and University Bari
Ultra fast SF57 based SAC M. Raggi Sapienza Università di Roma
“Performance test of a lead glass
Options and Recommendations for TL and Dumps
Development of a Compton Camera for online range monitoring
BNL electronics: first tests
Jin Huang Los Alamos National Lab
Geant4 Simulation :MCP PET
Sergey Abrahamyan Yerevan Physics Institute APEX collaboration
Directional Optical Module Integration
Department of Physics and Astronomy,
Deng Ziyan Jan 10-12, 2006 BESIII Collaboration Meeting
X. Zhu1, 3, Z. Deng1, 3, A. Lan2, X. Sun2, Y. Liu1, 3, Y. Shao2
AGATA week Uppsala, July 2008
A Multi-Threshold Method for TOF-PET Signal Processing
Времяпролетный детектор PANDA
High Rate Photon Irradiation Test with an 8-Plane TRT Sector Prototype
Particle ID Diagnostics in the MICE Beamline
MCP PET Simulation (7) – Pixelated X-tal
md-NUV PET project meeting
LSO: Energy resolution
Beam Tests data vs Matlab simulations
PID detector on BESIII Nov 27th, 2007 Yuekun Heng IHEP
CLAS 12 Status of the test bench Calculation of the time resolution
BESIII TOF Digitization
Status Report on MCP PET Simulation
Beam Tests data vs Matlab simulations
Presentation transcript:

1 Geant4 Simulation :MCP PET 4’’(102mm) Scintillator ( LSO) 4’’(102mm) 10mm Glass( Borosilicate) PhotocathodeI(Carbon) Space(Vacuum) MCP(Alumina) Space(Vacumm) Trans-Line(Gold) Isolator(Alumina) Ground(Copper) Scintillator MCP Assembly 0.060’’ 0.002’’ 0.040’’ 0.200’’ 0.040’’ 0.035mm 0.400mm 0.025mm Air Gap 0.001’’ 9.15mm

2 Simulation Setup 113.2mm 28.3mm 102mm(4’’) 511keV 2 gamma 50mm Scintillator : LSO, LaBr3

3 # of photoelectron at photo-cathode # of p.e at 1 st layer Sum of 2 sides( front and back) 371 for LSO 976 for LaBr3( ~2.6 times larger than LSO) LaBr3 has more compton scattering events. # of p.e ( LSO) LaBr3

4 Single Electron Responses 1.Pulse Shape ~500ps rise time(top) ( real measurement by J-F, 18 p.e) similar value for falling time assume asymmetric gausian shape 2. Average gain factor : 10e6 Single electron gain ~70% in FWHM. 3. Transit Time Spread sigma = 50ps. Simulated pulse shape real measurement

5 Readout Scheme TL direction Front Side( -> Extract X cor)Back Side(-> Extract Y cor) Readout signals from 24 horizontally (vertically) running TLs. TL : 4mm width, 4.25mm pitch. Total 384(24 TL x 2 ends/TL x 2 sides x 4layers) channels for a module. Position : 5 TL energy weight Energy : Sum of two sides( e.g, 5 TL sum w.r.t the maximum for each side) Timing : Average of maximum TL from each side.

6 Sample pulses(LaBr3) TL#7TL#8TL#9 TL#10 TL#11TL#12 TL#13TL#14TL#15 Layer#0 Front side One end. # of p.e = 259 Beam: Middle of TL#11 & TL#12 mV ns

7 Pulse( close-up) ( LaBr3) mV ns TL#11TL#12

8 Energy resolution(LaBr3) pC Sum of 5 TLs ( around the maximum) Integrated Charge. 10^6 gain 50ohm termination. ~24% of effi. Around 511keV peak. ( > 130pC) ~9% FWHM Energy resol. at 511keV.

9 Position(LaBr3) A) X = 0mmB) X = 2.125mmC) X = 4.25mm Recon. X(peak)0.05mm2.14mm4.24mm A) Beam X = 0mm B) Beam X = 2.125mmC) Beam X = 4.25mm Position : Energy weighted of 5 TLs (w.r.t the maximum energy TL.)

10 Coincidence Timing resolution(LaBr3) Event time: Average of 4 timing 1. Finid first non-zero signal layer. 2. Find maximum signal TL. 3. Apply 5mV threshold, Leading Edge. Top: ~1ns FWHM ( ~62% eff.) Before energy cut Bottom : 375ps FWHM ( 6.7% eff.) Select the event around 511keV energy. Energy > 130( pC)

11 Summary 1.Four layers of MCPs+Scintillator 2.Continuous Scintillator( 4’’x4’’) ( LaBr3, LSO) mm pitch ( ) of TLs. 4. Energy : ~9% at 511keV CoincidenceTiming : ~375ps ( ~7% effi.)

12 Backup: Pulse shape( LSO) Layer#0 Front side One end. # of p.e = 90 Beam: Middle of TL#11 & TL#12