NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY … or NMR for short.

Slides:



Advertisements
Similar presentations
Nuclear Magnetic Resonance (NMR) Spectroscopy
Advertisements

NMR-Part CNMR Video 2 Features of 13 CNMR 1) Low Natural Abundance: Since most polymers are composed of hydrogen and carbon, the natural alternative.
Advanced Higher Unit 3 Nuclear Magnetic Resonance Spectroscopy.
Structure Determination: MS, IR, NMR (A review)
NMR Spectroscopy.
1 CHAPTER 13 Molecular Structure by Nuclear Magnetic Resonance (NMR)
Nuclear Magnetic Resonance (NMR) Spectroscopy
NMR: Theory and Equivalence. Nuclear Magnetic Resonance Powerful analysis – Identity – Purity No authentic needed Analyze nuclei – 1 H, 13 C, 31 P, etc.
Nuclear Magnetic Resonance (NMR) Spectroscopy
Chapter 13 Nuclear Magnetic Resonance Spectroscopy
Understanding 13 C NMR spectroscopy. Nuclear magnetic resonance is concerned with the magnetic properties of certain nuclei. In this course we are concerned.
1 Nuclear Magnetic Resonance Spectroscopy Renee Y. Becker Valencia Community College CHM 2011C.
Spectroscopy nuclear magnetic resonance. The nmr spectra included in this presentation have been taken from the SDBS database with permission. National.
Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure Nuclear Magnetic Resonance (NMR)
NMR Theory and C-13 NMR. Nuclear Magnetic Resonance Powerful analysis – Identity – Purity No authentic needed Analyze nuclei – 1 H, 13 C, 31 P, etc –
Proton NMR Spectroscopy. The NMR Phenomenon Most nuclei possess an intrinsic angular momentum, P. Any spinning charged particle generates a magnetic field.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy Based on McMurry’s Organic Chemistry, 7 th edition.
Nuclear Magnetic Resonance (NMR) Spectroscopy Structure Determination
Nuclear Magnetic Resonance Spectroscopy. The Use of NMR Spectroscopy Used to map carbon-hydrogen framework of molecules Most helpful spectroscopic technique.
Proton NMR Spectroscopy. The NMR Phenomenon Most nuclei possess an intrinsic angular momentum, P. Any spinning charged particle generates a magnetic field.
Chapter 13 Spectroscopy Infrared spectroscopy Ultraviolet-Visible spectroscopy Nuclear magnetic resonance spectroscopy Mass Spectrometry.
Copyright © 2000 by John Wiley & Sons, Inc. All rights reserved. Introduction to Organic Chemistry 2 ed William H. Brown.
Nuclear Magnetic Resonance
Introduction Spectroscopy is an analytical technique which helps determine structure. It destroys little or no sample. The amount of light absorbed by.
NMR-Part Chemical Shifts in NMR The nuclei not only interact with the magnetic field but also with the surronding nuclei and their electrons. The.
Nuclear Magnetic Resonance Spectroscopy Dr. Sheppard Chemistry 2412L.
NMR Spectroscopy Abu Yousuf, PhD Associate Professor Department of Chemical Engineering & Polymer Science Shahjalal University of Science & Technology.
13. Structure Determination: Nuclear Magnetic Resonance Spectroscopy Based on McMurry’s Organic Chemistry, 6 th edition.
NMR spectroscopy L.O.:  State that NMR spectroscopy involves interaction of materials with low-energy radio frequency radiation.  Describe the use of.
1 Nuclear Magnetic Resonance Spectroscopy 13 C NMR 13 C Spectra are easier to analyze than 1 H spectra because the signals are not split. Each type of.
Chapter 3 Nuclear Magnetic Resonance Spectroscopy Many atomic nuclei have the property of nuclear spin. When placed between the poles of a magnet, the.
Nuclear Magnetic Resonance Spectroscopy. 2 Introduction NMR is the most powerful tool available for organic structure determination. It is used to study.
Week 11 © Pearson Education Ltd 2009 This document may have been altered from the original State that NMR spectroscopy involves interaction of materials.
Nuclear Magnetic Resonance
Nuclear Magnetic Resonance Spectroscopy (NMR) Dr AKM Shafiqul Islam School of Bioprocess Engineering.
MC 13.1 Spectroscopy, Pt I 1 Spectrocopy  Nuclear Magnetic Resonance (NMR)spectroscopy  Infrared (IR) Spectroscopy  Ultraviolet-Visible (UV-VIS) Spectroscopy.
All atoms, except those that have an even atomic number and an even mass number, have a property called spin.
CHEM 344 Spectroscopy of Organic Compounds Lecture 1 4th and 5 th September 2007.
Nuclear Magnetic Resonance Information Gained: Different chemical environments of nuclei being analyzed ( 1 H nuclei): chemical shift The number of nuclei.
Chapter 13 Structure Determination: Nuclear Magnetic Resonance Spectroscopy.
W HAT IS NUCLEAR MAGNETIC RESONANCE ? State that NMR spectroscopy involves interaction of materials with low-energy radio frequency radiation. Describe.
NMR Spectroscopy.
Nuclear Magnetic Resonance
NMR Spectroscopy. NMR NMR uses energy in the radio frequency range. NMR uses energy in the radio frequency range. This energy is too low to cause changes.
Nuclear Magnetic Resonance Spectroscopy. Principles of Molecular Spectroscopy: Electromagnetic Radiation.
NMR Spectroscopy: 1 H NMR Spectroscopy: Nuclear Magnetic Resonance.
Nuclear Magnetic Resonance Spectroscopy. Learning Objectives Use high resolution n.m.r spectrum of simple molecules (carbon, hydrogen & oxygen) to predict.
There are 2 variables in NMR: an applied magnetic field B 0, and the frequency ( ) of radiation required for resonance, measured in MHz. NMR Theory
From physics we know that a spinning charge has an associated magnetic field. All nuclei have positive charge. Some nuclei have “spin” and are “NMR active”.
Chapter 13 Spectroscopy Infrared spectroscopy Ultraviolet-visible spectroscopy Nuclear magnetic resonance spectroscopy Mass spectrometry Copyright © The.
Structure Elucidation Method
There are 2 variables in NMR: an applied magnetic field B 0, and the frequency ( ) of radiation required for resonance. NMR Theory.
Nuclear Magnetic Resonance (NMR) for beginners. Overview NMR is a sensitive, non-destructive method for elucidating the structure of organic molecules.
MOLECULAR STRUCTURE ANALYSIS NMR Spectroscopy VCE Chemistry Unit 3: Chemical Pathways Area of Study 2 – Organic Chemistry.
Nuclear magnetic resonance Spectroscopy Basic Concept.
11.1 Nuclear Magnetic Resonance Spectroscopy
NMR Theory From physics we know that a spinning charge has an associated magnetic field. All nuclei have positive charge. Some nuclei have “spin” and are.
NMR spectroscopy – key principles
Spectroscopy nuclear magnetic resonance.
Department of chemistry Smt. K. R. P. Kanya Mahavidyalaya, Islampur
NMR: Theory and Equivalence
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
Chemical shift The relative energy of resonance of a particular nucleus resulting from its local environment is called chemical shift. NMR spectra show.
NMR (Nuclear Magnetic Resonance)
Nuclear Magnetic Resonance Spectroscopy
Nuclear Magnetic Resonance (NMR)
Nuclear Magnetic Resonance (NMR)
Presentation transcript:

NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY … or NMR for short

13 C – nmr 13 C ~ 1.1% of carbons 1)number of signals: how many different types of carbons 2)splitting: number of hydrogens on the carbon 3)chemical shift: hybridization of carbon sp, sp 2, sp 3 4)chemical shift: environment

Nuclear Magnetic Resonance (nmr) -the nuclei of some atoms spin: 1 H, 13 C, 19 F, … -the nuclei of many atoms do not spin: 2 H, 12 C, 16 O, … -moving charged particles generate a magnetic field (  ) -when placed between the poles of a powerful magnet, spinning nuclei will align with or against the applied field creating an energy difference. Using a fixed radio frequency, the magnetic field is changed until the ΔE = E EM. When the energies match, the nuclei can change spin states (resonate) and give off a magnetic signal. ΔE

magnetic field = 14,092 gauss for 1 H v = 60,000,000 Hz (60 MHz) nmr spectrum intensity chemical shift (ppm) magnetic field 

THEORY OF NMR The small energy difference between the two alignments of magnetic spin corresponds to the energy of radio waves according to Einstein’s equation E=h. Application of just the right radiofrequency (  causes the nucleus to “flip” to the higher energy spin state Not all nuclei require the same amount of energy for the quantized spin ‘flip’ to take place. The exact amount of energy required depends on the chemical identity (H, C, or other element) and the chemical environment of the particular nucleus.

THEORY OF NMR The electron density surrounding a given nucleus depends on the electronegativity of the attached atoms. The more electronegative the attached atoms, the less the electron density around the nucleus in question. We say that that nucleus is less shielded, or is deshielded by the electronegative atoms. Deshielding effects are generally additive. That is, two highly electronegative atoms (2 Cl atoms, for example) would cause more deshielding than only 1 Cl atom. C and H are deshielded C and H are more deshielded

CHEMICAL SHIFT We call the relative position of absorption in the NMR spectrum (which is related to the amount of deshielding) the chemical shift. It is a unitless number (actually a ratio, in which the units cancel), but we assign ‘units’ of ppm or  (Greek letter delta) units. For 1 H, the usual scale of NMR spectra is 0 to 10 (or 12) ppm (or  ). The usual 13 C scale goes from 0 to about 220 ppm. The zero point is defined as the position of absorption of a standard, tetramethylsilane (TMS): This standard has only one type of C and only one type of H.

CMR SPECTRA Each unique C in a structure gives a single peak in the spectrum; there is rarely any overlap. The carbon spectrum spans over 200 ppm; chemical shifts only ppm apart can be distinguished; this allows for over 2x10 5 possible chemical shifts for carbon. The intensity (size) of each peak is NOT directly related to the number of that type of carbon. Other factors contribute to the size of a peak: Peaks from carbon atoms that have attached hydrogen atoms are bigger than those that don’t have hydrogens attached. Carbon chemical shifts are usually reported as downfield from the carbon signal of tetramethylsilane (TMS).

13 C CHEMICAL SHIFTS

PREDICTING 13 C SPECTRA Problem 13.6 Predict the number of carbon resonance lines in the 13 C spectra of the following (= # unique Cs): 4 lines plane of symmetry

PREDICTING 13 C SPECTRA Predicte the number of carbon resonance lines in the 13 C spectra of the major product of the following reaction: 7 lines 5 lines plane of symmetry

PREDICTING 13 C SPECTRA Predicte the number of carbon resonance lines in the 13 C spectra of the major product of the following reaction: 7 lines 5 lines plane of symmetry

2-bromobutane a c d b CH 3 CH 2 CHCH 3 Br 13 C-nmr