Secondary Polarisation ASIAA 2005 CMB quadrupole induced polarisation from Clusters and Filaments Guo Chin Liu.

Slides:



Advertisements
Similar presentations
Lensing of the CMB Antony Lewis Institute of Astronomy, Cambridge Review ref: Lewis, Challinor, Phys. Rep: astro-ph/
Advertisements

Institute of Astronomy, Cambridge
Constraining Inflation Histories with the CMB & Large Scale Structure Dynamical & Resolution Trajectories for Inflation then & now Dick Bond.
Latest Results from WMAP: Three-year Observations Eiichiro Komatsu (UT Austin) Texas Symposium in Melbourne December 15, 2006.
Anisotropies of Cosmic Microwave Background and Its Polarization A New & Ultimate Tool for Cosmology and Particle Physics Naoshi Sugiyama Nagoya University.
Cosmic Baryons: The IGM Ue-Li Pen 彭威禮. Overview History of Cosmic Baryons: a gas with phase transitions Missing baryons simulations SZ-Power spectrum:
Planck 2013 results, implications for cosmology
Cosmology topics, collaborations BOOMERanG, Cosmic Microwave Background LARES (LAser RElativity Satellite), General Relativity and extensions, Lense-Thirring.
Suzanne Staggs (Princeton) Rencontres de Blois, 1 June 2011 The Atacama Cosmology Telescope (ACT): Still More Cosmology from the Cosmic Microwave Background.
Lecture 2: Observational constraints on dark energy Shinji Tsujikawa (Tokyo University of Science)
Dynamical Dark Energy and Its Coupling to Matter Kin-Wang Ng ( 吳建宏 ) ASIoP ( 中央研究院物理所 ) & ASIAA ( 中央研究院天文所 ), Taipei NTHU Oct 4, 2007 Thanks to D.-S. Lee(
The Cosmic Microwave Background. Maxima DASI WMAP.
CMB as a physics laboratory
Quintessence – Phenomenology. How can quintessence be distinguished from a cosmological constant ?
Cosmic 21-cm Fluctuations from Dark-Age Gas Kris Sigurdson Institute for Advanced Study Cosmo 2006 September 25, 2006 Kris Sigurdson Institute for Advanced.
Gary Hinshaw NASA/GSFC From Quantum to Cosmos, Airlie Center VA, July year Results from WMAP with a Glimpse Ahead.
Probing Dark Matter with the CMB and Large-Scale Structure 1 Cora Dvorkin IAS (Princeton) Harvard (Hubble fellow) COSMO 2014 August 2014, Chicago.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 14; March
Inflation, Expansion, Acceleration Two observed properties of the Universe, homogeneity and isotropy, constitute the Cosmological Principle Manifest in.
Constraining DM scenarios with CMB Fabio Iocco Institut d’Astrophysique de Paris Institut de Physique Theorique, CEA/Saclay In collaboration with: G. Bertone,
CMB acoustic peaks.
Cosmic Microwave Background (CMB) Peter Holrick and Roman Werpachowski.
Cosmology, University of Bologna – May Cosmology: Polarization of the Cosmic Microwave Background Steven T. Myers University of Bologna and the.
PHY306 1 Modern cosmology 4: The cosmic microwave background Expectations Experiments: from COBE to Planck  COBE  ground-based experiments  WMAP  Planck.
Polarization-assisted WMAP-NVSS Cross Correlation Collaborators: K-W Ng(IoP, AS) Ue-Li Pen (CITA) Guo Chin Liu (ASIAA)
Early times CMB.
Cosmology from CMB Dmitry Pogosyan University of Alberta Lake Louise, February, 2003 Lecture 1: What can Cosmic Microwave Background tell us about the.
Dark energy I : Observational constraints Shinji Tsujikawa (Tokyo University of Science)
Cosmic Microwave Background  Cosmological Overview/Definitions  Temperature  Polarization  Ramifications  Cosmological Overview/Definitions  Temperature.
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
Constraints on the neutrino mass by future precise CMB polarization and 21cm line observations Yoshihiko Oyama The Graduate University for Advanced Studies.
How can CMB help constraining dark energy? Licia Verde ICREA & Institute of space Sciences (ICE CSIC-IEEC)
Cosmology : Cosmic Microwave Background & Large scale structure & Large scale structure Cosmology : Cosmic Microwave Background & Large scale structure.
CMB Polarization from Patchy Reionization Gil Holder.
Lecture 5: Matter Dominated Universe: CMB Anisotropies and Large Scale Structure Today, matter is assembled into structures: filaments, clusters, galaxies,
Constraining cluster abundances using weak lensing Håkon Dahle Institute of Theoretical Astrophysics, University of Oslo.
MAPping the Universe ►Introduction: the birth of a new cosmology ►The cosmic microwave background ►Measuring the CMB ►Results from WMAP ►The future of.
Yanchuan Cai ( 蔡彦川 ) Shaun Cole, Adrian Jenkins, Carlos Frenk Institute for Computational Cosmology Durham University May 31, 2008, NDHU, Taiwan ISW Cross-Correlation.
the National Radio Astronomy Observatory – Socorro, NM
Results from Three- Year WMAP Observations Eiichiro Komatsu (UT Austin) TeV II Particle Astrophysics August 29, 2006.
Reionizing the Universe with Dark Matter : constraints on self-annihilation cross sections Fabio Iocco Marie Curie fellow at Institut d’Astrophysique de.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
Primordial fluctuations 20  Isotropic 3K background. The most perfect blackbody we know Dipole (3.4 mK). Our motion relative to CMB.
BBN: Constraints from CMB experiments Joanna Dunkley University of Oxford IAUS Geneva, Nov
Reionisation and the cross-correlation between the CMB and the 21-cm line fluctuations Hiroyuki Tashiro IAS, ORSAY 43rd Rencontres de Moriond La Thuile,
L2: The Cosmic Microwave Background & the Fluctuation History of the Universe & the Basic Cosmological Parameters Dick Bond.
The Planck Satellite Hannu Kurki-Suonio University of Helsinki Finnish-Japanese Workshop on Particle Cosmology, Helsinki
Bwdem – 06/04/2005doing cosmology with galaxy clusters Cosmology with galaxy clusters: testing the evolution of dark energy Raul Abramo – Instituto de.
Cosmology and Dark Matter III: The Formation of Galaxies Jerry Sellwood.
Probing Dark Energy Birefringence by CMB polarization
The Cosmic Microwave Background
Basics of the Cosmic Microwave Background Eiichiro Komatsu (UT Austin) Lecture at Max Planck Institute August 14, 2007.
CLUSTERS OF GALAXIES IGM, and Scaling Laws. Emission Processes of Clusters of Galaxies in the X-ray Band.
Remote Quadrupole Measurements from Reionization Gil Holder Collaborators: Jon Dudley; Alex van Engelen (McGill) Ilian Iliev (CITA/Zurich); Olivier Dore.
Large Scale Anisotropy in the Universe Pankaj Jain I.I.T. Kanpur.
Study of Proto-clusters by Cosmological Simulation Tamon SUWA, Asao HABE (Hokkaido Univ.) Kohji YOSHIKAWA (Tokyo Univ.)
Cheng Zhao Supervisor: Charling Tao
The cross-correlation between CMB and 21-cm fluctuations during the epoch of reionization Hiroyuki Tashiro N. Aghanim (IAS, Paris-sud Univ.) M. Langer.
Smoke This! The CMB, the Big Bang, Inflation, and WMAP's latest results Spergel et al, 2006, Wilkinson Microwave Anisotropy Probe (WMAP) Three Year results:
The Cosmic Microwave Background and the WMAP satellite results
Cosmic Microwave Background
Lecture 2 IGM, Scaling Laws Clusters Cosmology Connection
Standard ΛCDM Model Parameters
Cosmology from Large Scale Structure Surveys
Coherent analysis of CMB anisotropies CMB, structures and Foregrounds
Precision cosmology, status and perspectives
Detection of integrated Sachs-Wolfe effect by cross-correlation of the
Lecture 5: Matter Dominated Universe
CMB Anisotropy 이준호 류주영 박시헌.
Presentation transcript:

Secondary Polarisation ASIAA 2005 CMB quadrupole induced polarisation from Clusters and Filaments Guo Chin Liu

Secondary Polarisation ASIAA 2005 CMB Observations COBE 1992 WMAP 2002 Boomerang 2001MAXIMA 2001DASI 2001

Secondary Polarisation ASIAA 2005 Big bang Inflation, phase transition Generate fluctuations Recombination z=1000 Primordial anisotropy Fluct. Evolution Acoustic oscillation Dark age Secondary anisotropy z=4 z=0 Universe history

Secondary Polarisation ASIAA 2005 Observed Power spectrum HInshaw et al ℓ  / 

Secondary Polarisation ASIAA 2005 Planck △ I/I △ Q/I U ℓ  /  △ U/I

Secondary Polarisation ASIAA 2005 How Polarisation Generate? 温度揺らぎの × monopole × dipole ○ quadrupole 入射 散乱 の polarisation 方向 Thomson scattering e-e- 入射波 linearly polarized

Secondary Polarisation ASIAA 2005 ? Where the secondary polarisation come from? Statistic properties? Bias the primordial polarisation? Open new window?

Secondary Polarisation ASIAA 2005 Obs LSS of the cluster P   Q cmb  : Optical depth CMB-induced— Primordial CMB Quadrupole LSS of the Obs. First idea by Zal’dovich & Sunyaev (1980) Primordial CMB quadrupole 16  12  K COBE Kogut et al Average polarisation in the center of cluster : 3   K Sazonov & Sunyaev 1999

Secondary Polarisation ASIAA 2005 To know dark energy from the evolution of Quadrupole CMB primordial Quadrupole ISW Q 2 (z)= ∫ dk/k k 3 △ 2 T2 (k,z)

Secondary Polarisation ASIAA 2005 CMB-induced— kinetic quadrupole V Obs P   v t 2 V t : transverse velocity L SS of Obs. Estimate transverse velocity of cluster Zal’dovich & Sunyaev 1980

Secondary Polarisation ASIAA 2005 CMB-induced— double scattering Obs P   2 v t P   2 T e Te :cluster temperature

Secondary Polarisation ASIAA 2005 Modulated Quadrupole S m (k,  ): = ∫ d 3 p  e (k-p,  ) △ m T2 (p,  )   e (k,  ) ∫ d 3 p △ m T2 (p,  ) =  e (k,  ) ∫d 3 p △ 0 T2 (p,  )Y m 2 (p) k p Quadrupole cluster filament Density fluctuationQuadrupole

Secondary Polarisation ASIAA 2005 Formula C (E,B)ℓ  ℓ 4  m ∫ k 2 dk mTmElTmEl TmBlTmBl 0(-i) l j l (kr)/(kr) 2 0 11  (-i) l [(l+1)j l-1 (kr) - lj l (kr)] / [(2l+1)kr-  6l(l+1)]  (-i) l [  3/2l(l+1)]* j l (kr)/(kr) 2 22  (-i) l {[(l+2)(l+1)/(2l-1)+l(l+1)/(2l+3) -(2l+1)(l-1)(l+2)/(2l-1)(2l+3)] j l (kr) -(l+2)(l+1) j l-1 (kr)/kr-l(l-1) j l+1 (kr)/kr}  ((l-2)!/6(l+2)!)/(2l+1)  (-i) l {(l+2) j l-1 (kr)-(l-1) j l+1 (kr)  ((l-2)!/6(l+2)!)/(2l+1) g(  )  - e  (  0)-  (  ) d  /d  visibility function: possibility of last scattering at epoch 

Secondary Polarisation ASIAA 2005 Simulation details Public Hydra Code Couchnman et al Pearce & Couchnman 1997 Non-radiative model Cosmological parameters  m =0.3  b =0.044   =0.7 h=0.71 L box =100h -1 Mpc Normalization  8 =0.8,0.9, 1.0 M dark : 2.1x10 10 M o /h M gas :2.6x10 9 M o /h

Secondary Polarisation ASIAA 2005 Gas Evolution T>10 5 K 5<  < △ c  > △ c = 178  m (z) -0.6

Secondary Polarisation ASIAA 2005 simulations  =∫d l  T n e (phase)

Secondary Polarisation ASIAA 2005 simulations

Secondary Polarisation ASIAA 2005 simulations

Secondary Polarisation ASIAA 2005 simulations

Secondary Polarisation ASIAA 2005 simulations

Secondary Polarisation ASIAA 2005 E=B E-modeB-mode m=060 m=  1 04 m=  2 10 For all ionised particles

Secondary Polarisation ASIAA 2005 Comparing with SZ temperature Temp. : Cluster Polar. : Filament sz polarisation Factor 2 in small scales 1 order different in large scales ℓ(ℓ+1)C Tl /2  da Silva et al 2001 SZ thermal

Secondary Polarisation ASIAA 2005 Why Filament Dominate? visibility Cluster, small scale Cluster, large scale Filament, small scale Filament, large scale

Secondary Polarisation ASIAA 2005 88 Amplitude   8 4

Secondary Polarisation ASIAA 2005 Bias primordial polarisation? r = Q T /Q S

Secondary Polarisation ASIAA 2005 Discussion--week lensing T E Spherical source Lensed TLensed E Lensed B

Secondary Polarisation ASIAA 2005 Comparing with lensing Primordial E Primordial B Lensed B Erasing lensing effect? Pin down lensing to 2 order Seljak & Hirata 2004

Secondary Polarisation ASIAA 2005 Discussion—Faraday rotation RM from Clarke et al and RM profile of Takada et al model for estimating RM 1.Universal constant B 0 2.  -model profile  (r)=  0 [1+(r/r c ) 2 ] -3  /2 3. =1/N ∫ dM dn/dM[ △  (r)/ 2 ] 2

Secondary Polarisation ASIAA 2005 Discussion—Faraday rotation

Secondary Polarisation ASIAA 2005 Summary of secondary effects

Secondary Polarisation ASIAA 2005 Summary 1.The E-mode and B-mode have same power because the symmetry of the quadrupole in its k-space is broken by coupling with electron field. 2.The power spectrum l(l+1)Cl/2  for all the ionising particles ~ ~ K 2 3.Secondary polarisation for cluster and filament dominate at the small scales.

Secondary Polarisation ASIAA At the intermediate scales, the B-mode power is dominated by the lensing generated power spectrum. 5. The amplitude of the secondary polarisatioin   The power contribute from filament is much larger than the ICM different with the case of tSZ. 7. Others secondary polarisation? Summary

Secondary Polarisation ASIAA 2005 Discussion—temperature 1.Reducing the threshold increases the ionization particles =>Enhance the total and IGM polarization power 2.The structures of ICM are smoothed =>Reduce the ICM polarization power

Secondary Polarisation ASIAA 2005 Ionized gas and visibility function T e > 10 5 K Ionized △ c= 178  m (z) -0.6 (Eke 1996) visibility