Transformations of Functions. Graphs of Common Functions See Table 1.4, pg 184. Characteristics of Functions: 1.Domain 2.Range 3.Intervals where its increasing,

Slides:



Advertisements
Similar presentations
Unit 3 Functions (Linear and Exponentials)
Advertisements

Unit 3 Functions (Linear and Exponentials)
FUNCTIONS AND MODELS New Functions from Old Functions In this section, we will learn: How to obtain new functions from old functions and how to.
1 Transformations of Functions SECTION Learn the meaning of transformations. Use vertical or horizontal shifts to graph functions. Use reflections.
Section 1.6 Transformation of Functions
Table of Contents Functions: Transformations of Graphs Vertical Translation: The graph of f(x) + k appears.
Transformations xf(x) Domain: Range:. Transformations Vertical Shifts (or Slides) moves the graph of f(x) up k units. (add k to all of the y-values) moves.
Definition of a Logarithmic Function For x > 0 and b > 0, b≠ 1, y = log b x is equivalent to b y = x The function f (x) = log b x is the logarithmic function.
1 The graphs of many functions are transformations of the graphs of very basic functions. The graph of y = –x 2 is the reflection of the graph of y = x.
Determine whether a graph is symmetric with respect to the x-axis, the y-axis, and the origin. Determine whether a function is even, odd, or neither even.
Shifting Graphs Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 The graphs of many functions are transformations.
Copyright © 2009 Pearson Education, Inc. CHAPTER 2: More on Functions 2.1 Increasing, Decreasing, and Piecewise Functions; Applications 2.2 The Algebra.
Graphing Techniques: Transformations
Precalculus Transformation of Functions Objectives Recognize graphs of common functions Use shifts to graph functions Use reflections to graph.
Copyright © 2014, 2010, 2006 Pearson Education, Inc. 1 Chapter 3 Quadratic Functions and Equations.
Exponential Functions Section 4.1 Objectives: Evaluate exponential functions. Graph exponential functions. Evaluate functions with base e. Use compound.
Exponential Functions and Their Graphs Digital Lesson.
Warm-Up Please fill out the chart to the best of your ability.
Mrs. McConaughyHonors Algebra 21 Graphing Logarithmic Functions During this lesson, you will:  Write an equation for the inverse of an exponential or.
Graphing Reciprocal Functions
Exponential Functions. Definition of the Exponential Function The exponential function f with base b is defined by: f (x) = b x or y = b x Where b is.
Exponential Functions and Their Graphs 2 The exponential function f with base a is defined by f(x) = a x where a > 0, a  1, and x is any real number.
Functions and Models 1. New Functions from Old Functions 1.3.
2.5 Transformations of Functions What are the basic function formulas we have covered and what does each graph look like? What kinds of ways can we manipulate.
Sullivan PreCalculus Section 2.5 Graphing Techniques: Transformations
Chapter 2 Functions and Graphs Copyright © 2014, 2010, 2007 Pearson Education, Inc Transformations of Functions.
Graphical Transformations. Quick Review What you’ll learn about Transformations Vertical and Horizontal Translations Reflections Across Axes Vertical.
1.3 New Functions from Old Functions In this section, we will learn: How to obtain new functions from old functions and how to combine pairs of functions.
 Let c be a positive real number. Vertical and Horizontal Shifts in the graph of y = f(x) are represented as follows. 1. Vertical shift c upward:
WEEK 6 FUNCTIONS AND GRAPHS TRANSFORMATIONS OF FUNCTIONS.
Exponential Functions. Definition of the Exponential Function The exponential function f with base b is defined by f (x) = b x or y = b x Where b is a.
Copyright © Cengage Learning. All rights reserved. Pre-Calculus Honors 1.3: Graphs of Functions HW: p.37 (8, 12, 14, all, even, even)
Math-3 Lesson 1-3 Quadratic, Absolute Value and Square Root Functions
Objectives Vertical Shifts Up and Down
Digital Lesson Shifting Graphs.
Sec 2.4 Transformation of Graphs. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 The graphs of many functions are transformations.
Chapter 2 Functions and Graphs Copyright © 2014, 2010, 2007 Pearson Education, Inc Transformations of Functions.
Quick Crisp Review Graphing a piecewise function Determine relative max and min Graphing a step function 35)a) oddb) even (-3/2, 4)
Shifting Graphs. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. As you saw with the Nspires, the graphs of many functions are transformations.
2.5 Shifting, Reflecting, and Stretching Graphs. Shifting Graphs Digital Lesson.
 .
Transformation of Functions Sec. 1.7 Objective You will learn how to identify and graph transformations.
(a) (b) (c) (d) Warm Up: Show YOUR work!. Warm Up.
Vocabulary The distance to 0 on the number line. Absolute value 1.9Graph Absolute Value Functions Transformations of the parent function f (x) = |x|.
1. g(x) = -x g(x) = x 2 – 2 3. g(x)= 2 – 0.2x 4. g(x) = 2|x| – 2 5. g(x) = 2.2(x+ 2) 2 Algebra II 1.
Math 1330 Section 1.3 Section 1.3 Transformations of Graphs In College Algebra, you should have learned to transform nine basic functions. Here are the.
Warm Up for Lesson 3.5 1)Solve: x 2 – 8x – 20 = 0 2) Sketch the graph of the equation y = 2x – 4.
Section 1.4 Transformations and Operations on Functions.
1 PRECALCULUS Section 1.6 Graphical Transformations.
Transformations of Functions. The vertex of the parabola is at (h, k).
Section 2.5 Transformations Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
RECAP Functions and their Graphs. 1 Transformations of Functions For example: y = a |bx – c| + d.
For each function, evaluate f(0), f(1/2), and f(-2)
Transforming Linear Functions
College Algebra Chapter 2 Functions and Graphs Section 2.6 Transformations of Graphs.
Section P.3 Transformation of Functions. The Constant Function.
Shifting, Reflecting, & Stretching Graphs 1.4. Six Most Commonly Used Functions in Algebra Constant f(x) = c Identity f(x) = x Absolute Value f(x) = |x|
SECTION 1.6 TRANSFORMATION OF FUNCTIONS. Graphs Of Common Functions AKA Mother Functions.
Transformations of Graphs
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Transformations of Functions
Transformations of Functions
Transformations of Graphs
Copyright © 2014, 2010, 2007 Pearson Education, Inc.
Unit 3 Review.
Transformation rules.
Transformation of Functions
Transformations of Functions
Chapter 2: Analysis of Graphs of Functions
Transformations.
Presentation transcript:

Transformations of Functions

Graphs of Common Functions See Table 1.4, pg 184. Characteristics of Functions: 1.Domain 2.Range 3.Intervals where its increasing, decreasing, or constant 4.symmetry

Vertical Shifts y = f (x) + c y = f (x)y = f (x) - c y = f (x) c c Let f be a function and c a positive real number. The graph of y = f (x) + c is the graph of y = f (x) shifted c units vertically upward. The graph of y = f (x) – c is the graph of y = f (x) shifted c units vertically downward.

Example Use the graph of y = x 2 to obtain the graph of y = x

Example cont. Use the graph of y = x 2 to obtain the graph of y = x Step 1Graph f (x) = x 2. The graph of the standard quadratic function is shown. Step 2Graph g(x) = x Because we add 4 to each value of x 2 in the range, we shift the graph of f vertically 4 units up.

Horizontal Shifts y = f (x + c) y = f (x)y = f (x - c) y = f (x) cc Let f be a function and c a positive real number. The graph of y = f (x + c) is the graph of y = f (x) shifted to the left c units. The graph of y = f (x - c) is the graph of y = f (x) shifted to the right c units.

Text Example Use the graph of f (x) to obtain the graph of h(x) = (x + 1) 2 – Solution Step 1Graph f (x) = x 2. The graph of the standard quadratic function is shown. Step 2Graph g(x) = (x + 1) 2. Because we add 1 to each value of x in the domain, we shift the graph of f horizontally one unit to the left. Step 3Graph h(x) = (x + 1) 2 – 3. Because we subtract 3, we shift the graph vertically down 3 units.

Reflection about the x-Axis The graph of y = - f (x) is the graph of y = f (x) reflected about the x-axis.

Reflection about the y-Axis The graph of y = f (-x) is the graph of y = f (x) reflected about the y-axis.

f (x) = x 2 h(x) =1/2x 2 g(x) = 2x 2 Stretching and Shrinking Graphs Let f be a function and c a positive real number. If c > 1, the graph of y = c f (x) is the graph of y = f (x) vertically stretched by multiplying each of its y-coordinates by c. If 0 < c < 1, the graph of y = c f (x) is the graph of y = f (x) vertically shrunk by multiplying each of its y-coordinates by c.

Sequence of Transformations A function involving more than one transformation can be graphed by performing transformations in the following order. 1. Horizontal shifting 2. Vertical stretching or shrinking 3. Reflecting 4. Vertical shifting

Example Use the graph of f(x) = x 3 to graph g(x) = (x+3) Solution: Step 1: Because x is replaced with x+3, the graph is shifted 3 units to the left.

Example Use the graph of f(x) = x 3 to graph g(x) = (x+3) Solution: Step 2: Because the equation is not multiplied by a constant, no stretching or shrinking is involved.

Example Use the graph of f(x) = x 3 to graph g(x) = (x+3) Solution: Step 3: Because x remains as x, no reflecting is involved.

Example Use the graph of f(x) = x 3 to graph g(x) = (x+3) Solution: Step 4: Because 4 is subtracted, shift the graph down 4 units.