Presentation is loading. Please wait.

Presentation is loading. Please wait.

Shifting Graphs. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. As you saw with the Nspires, the graphs of many functions are transformations.

Similar presentations


Presentation on theme: "Shifting Graphs. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. As you saw with the Nspires, the graphs of many functions are transformations."— Presentation transcript:

1 Shifting Graphs

2 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. As you saw with the Nspires, the graphs of many functions are transformations of the graphs of very basic functions. The graph of y = –x 2 is the reflection of the graph of y = x 2 in the x-axis. Example: The graph of y = x 2 + 3 is the graph of y = x 2 shifted upward three units. This is a vertical shift. x y -4 4 4 -8 8 y = –x 2 y = x 2 + 3 y = x 2

3 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. f (x) f (x) + c +c+c f (x) – c -c If c is a positive real number, the graph of f (x) + c is the graph of y = f (x) shifted upward c units. Vertical Shifts If c is a positive real number, the graph of f (x) – c is the graph of y = f(x) shifted downward c units. x y

4 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. h(x) = |x| – 4 Example: Use the graph of f (x) = |x| to graph the functions g(x) = |x| + 3 and h(x) = |x| – 4. f (x) = |x| x y -4 4 4 8 g(x) = |x| + 3

5 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Graphing Utility: Sketch the graphs given by –55 4 –4

6 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. x y y = f (x)y = f (x – c) +c+c y = f (x + c) -c-c If c is a positive real number, then the graph of f (x – c) is the graph of y = f (x) shifted to the right c units. Horizontal Shifts If c is a positive real number, then the graph of f (x + c) is the graph of y = f (x) shifted to the left c units.

7 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. f (x) = x 3 h(x) = (x + 4) 3 Example: Use the graph of f (x) = x 3 to graph g (x) = (x – 2) 3 and h(x) = (x + 4) 3. x y -4 4 4 g(x) = (x – 2) 3

8 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Graphing Utility: Sketch the graphs given by –56 7 –1

9 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. -4 y 4 x x y 4 Example: Graph the function using the graph of. First make a vertical shift 4 units downward. Then a horizontal shift 5 units left. (0, 0) (4, 2) (0, – 4) (4, –2) (– 5, –4) (–1, –2)

10 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. y = f (–x) y = f (x) y = –f (x) The graph of a function may be a reflection of the graph of a basic function. The graph of the function y = f ( – x) is the graph of y = f (x) reflected in the y-axis. The graph of the function y = –f (x) is the graph of y = f (x) reflected in the x-axis. x y

11 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. x y 4 4 y = x 2 y = – (x + 3) 2 Example: Graph y = –(x + 3) 2 using the graph of y = x 2. First reflect the graph in the x-axis. Then shift the graph three units to the left. x y – 4 4 4 -4 y = – x 2 (–3, 0)

12 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Vertical Stretching and Shrinking If c > 1 then the graph of y = c f (x) is the graph of y = f (x) stretched vertically by c. If 0 < c < 1 then the graph of y = c f (x) is the graph of y = f (x) shrunk vertically by c. Example: y = 2x 2 is the graph of y = x 2 stretched vertically by 2. – 4– 4 x y 4 4 y = x 2 is the graph of y = x 2 shrunk vertically by. y = 2x 2

13 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. - 4- 4 x y 4 4 y = |x| y = |2x| Horizontal Stretching and Shrinking If c > 1, the graph of y = f (cx) is the graph of y = f (x) shrunk horizontally by c. If 0 < c < 1, the graph of y = f (cx) is the graph of y = f (x) stretched horizontally by c. Example: y = |2x| is the graph of y = |x| shrunk horizontally by 2. is the graph of y = |x| stretched horizontally by.

14 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. Graphing Utility: Sketch the graphs given by –5 5 5

15 Copyright © by Houghton Mifflin Company, Inc. All rights reserved. - 4- 4 4 4 8 x y Example: Graph using the graph of y = x 3. Step 4: - 4- 4 4 4 8 x y Step 1: y = x 3 Step 2: y = (x + 1) 3 Step 3: Graph y = x 3 and do one transformation at a time.

16 Graphing Functions

17 Graphing Functions (Cont.) Without a calculator, draw a quick sketch of each function.


Download ppt "Shifting Graphs. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. As you saw with the Nspires, the graphs of many functions are transformations."

Similar presentations


Ads by Google