IB Physics 11 Mr. Jean January 22 nd, 2014. The plan: Video clip of the day Polarization.

Slides:



Advertisements
Similar presentations
Interference in Thin Films
Advertisements

Chapter 9 Light as a Wave.
G6 Thin-film InterferenceG6 Thin-film Interference.
The Wave Nature of Light Thin Film Interference
Thin Film Interference
Thin Film Interference
Waves (in general) sine waves are nice
1 24 Overview wave effects: interference, diffraction polarization, scattering Homework: 1, 12, 43, 57, 67.
AP Physics Mr. Jean March 30 th, The plan: Review of slit patterns & interference of light particles. Quest Assignment #2 Polarizer More interference.
Physics for Scientists and Engineers, 6e
Lecture 15 Interference Chp. 36 Opening Demo Topics –Interference is due to the wave nature of light –Hyugens principle, Coherence –Change in wavelength.
Today’s agenda: Thin Film Interference. Phase Change Due to Reflection. You must be able to determine whether or not a phase change occurs when a wave.
Interference Applications Physics 202 Professor Lee Carkner Lecture 25.
C 2001 Wiley, Physics Cutnell & Johnson 5 th Ed. Fig. 27–10 THIN-FILM INTERFERENCE When light shines on a thin film of oil floating on a layer of water,
PHY 1371Dr. Jie Zou1 Chapter 37 Interference of Light Waves (Cont.)
Physics 52 - Heat and Optics Dr. Joseph F. Becker Physics Department San Jose State University © 2005 J. F. Becker.
Newton’s Rings Another method for observing interference in light waves is to place a planoconvex lens on top of a flat glass surface, as in Figure 24.8a.
6. Interference by thin films t No phase shift (if n 2 < n 1 ) Phase shift -_____ (if n 2 > n 1 ) If there is a very thin film of material – a few wavelengths.
Interference Applications Physics 202 Professor Lee Carkner Lecture 25.
Interference Applications Physics 202 Professor Lee Carkner Lecture 23.
Supplementary Material This set of slides contains material dealing with thin films and with the Michelson Interferometer. Both of these phenomena can.
Announcements HW set 9 due this week; covers Ch 23 and Ch Office hours: My office hours Th 2 -3 pm or make an appointment Come to class April 19.
6. Interference by thin films
Lecture 15 Interference Chp. 35 Topics –Interference from thin films –Due to the wave nature of light –Change in wavelength and phase change in a medium.
Thin Films. Bright Colors  Colors in nature are not only due to reflected wavelengths. Leaves – spectrum Butterfly – interference  A thin film in on.
It is against the honor code to “click” for someone else-violators will loose all clicker pts. HITT RF Remote Login Procedure: 1. PRESS AND HOLD THE DOWN.
Phase Change on Reflection To understand interference caused by multiple reflections it is necessary to consider what happens when a light wave moving.
EXAMPLE Young’s double-slit experiment is performed with 589-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference.
Chapter 27 Interference and the Wave Nature of Light.
Thin films The index of refraction (h) for a medium is defined as the speed of light in vacuum (c) divided by the speed of light in the medium(v).
(work030.jpg)
Diffraction is the bending of waves around obstacles or the edges of an opening. Huygen’s Principle - Every point on a wave front acts as a source of tiny.
Interference Patterns Constructive interference occurs at the center point The two waves travel the same distance –Therefore, they arrive in phase.
Interference Patterns Constructive interference occurs at the center point The two waves travel the same distance –Therefore, they arrive in phase.
Interference Applications Physics 202 Professor Lee Carkner Lecture 25.
INTERFERENCE BY THIN FILMS Young was able to explain the colors arising from thin films: the colors of soap bubbles and oil slicks on a wet pavement, the.
Thin Film Interference II. Thin Film Whiteboard I! White light is incident upon a type I thin film from above, as shown below. Then, the thickness of.
A water wave is incident on a breakwater as sketched below. Use Huygen’s principle to make a careful sketch the form of the waves on the back side of the.
Physics 11 Mr. Jean January 14 th, The plan: Video clip of the day Wave reflection Sound Waves in Open Pipe Sound waves in Closed Pipe.
Lecture 24 Interference of Light.
Thin Films Observations In small groups, take turns blowing bubbles from your bubble mix. Notice the color of the bubbles and when it appears that.
Thin Film Interference Use Polarizing Film & Plastic Wrap.
Wave Optics.
Physics 1C Lecture 27A. Interference Treating light as a particle (geometrical optics) helped us to understand how images are formed by lenses and mirrors.
Physics 11 Advanced Mr. Jean May 23 rd, The plan: Video clip of the day Wave Interference patterns Index of refraction Slit & Double Slit interference.
Today’s agenda: Thin Film Interference.
Physics 11 Advanced Mr. Jean May 28 th, The plan: Video clip of the day Wave Interference patterns Index of refraction Slit & Double Slit interference.
Sunlight, as the rainbow shows us, is a composite
Lecture 16 Interference Chapter 24.1  24.4 Outline Conditions for Interference Experiments Showing Interference Interference in Thin Films.
Thin Films, Diffraction, and Double slit interference.
Thin Film Interference Interference + Light. Superposition t +1 t +1 t Destructive Interference Out of Phase 180 degrees.
Chapter 24: Young’s Experiment Llyod’s Mirror Thin Films.
Refraction The bending of light due to a change in speed.
Refraction of Light.. A light beam going through a slab of glass:
Physics 11 Advanced Mr. Jean May 29 th, The plan: Video Clip of the day Modern Physics –Relative motion –Light is a problem Einstein’s change to.
Thin Film Interference Interference + Light. Superposition t +1 t +1 t Destructive Interference Out of Phase 180 degrees.
Chapter 24 Wave Optics. Young’s Double Slit Experiment Thomas Young first demonstrated interference in light waves from two sources in Light is.
G6 Thin-film InterferenceG6 Thin-film Interference.
6. Interference by thin films t If there is a very thin film of material – a few wavelengths thick – light will reflect from both the bottom and the top.
Announcements Final exam day events (Friday, May 12, 10:00am to 12:00pm) 50-point multiple choice end-material test (covering material from chapters 33-36).
Today’s agenda: Thin Film Interference.
Interference of Light Waves
6. Interference by thin films
Interference.
Today’s agenda: Thin Film Interference.
Interference of Light Waves
Today’s agenda: Thin Film Interference.
6. Interference by thin films
Today’s agenda: Thin Film Interference.
Presentation transcript:

IB Physics 11 Mr. Jean January 22 nd, 2014

The plan: Video clip of the day Polarization

Brewster’s Angle: When light encounters a boundary between two media with different refractive indices, some of it is usually reflected. The fraction that is reflected is dependent upon the incoming light's polarization and angle of incidence. At some point this light source will be entirely polarized thus causing no reflected light to be visible through Polaroid.

Brewster’s Angle Demonstration: Lab Demo sources/bu_semester2/c27_brewster.html

Phase Change: Reflection & Phase: –Light reflecting from a boundary can do so in phase (sort of a free end reflection) or out of phase (a fixed end reflection). (Spring vs. Spring with rope) –The thing that determines whether the reflected wave is in or out of phase is the difference in speed for light in the two media. –The wave will undergo a 180  phase change when it is reflected from a medium that has a higher index of refraction than the one it came through.

Demo 7-5 & 7-6

There will be no phase change if the wave is reflected from a medium that has a lower refractive index. –Example: You would get the phase change for light traveling through air and reflecting off glass. Glass has a higher index of refraction than air. –Example: You would not get a phase change for light traveling through glass and being reflected off water, since water has a lower index of refraction than glass.

Thin Film Interference: Thin Film Interference: This occurs when light travels through a very thin layer of transparent material. Thin film interference occurs with oil films, soap bubbles, etc. Light that is incident on the film has several things happen to it. –Some of the light is reflected off the top of the film. These waves have a 180  phase change since the index of refraction for the film is greater than for air. –Next, the light that goes into the film is refracted as it travels from air into the film. Some of the light goes into the air on the other side of the film. This light is refracted (back the other way). –Finally, some of the light is reflected off the air/film surface. This light does not undergo any phase change.

The film has a thickness of t. We let n be the index of refraction for the film. The index of refraction for air is, of course, 1. Ray 1 reflecting off the surface of the film has a 180  phase change. Ray 2 reflecting off the opposite film surface has no phase change. The two rays are out of phase.

Thin Film Problems: The two waves will recombine when you look into the film and the rays enter your eyes. If the path difference is half of the wavelength, or an odd multiple of the wavelength, then the waves will end up in phase and you will see constructive interference – a bright fringe. The basic kind of problem involves finding the minimum thickness that will cause constructive or destructive interference. This minimum would be when the wave came straight down onto the film. This means that the angle of incidence is zero.

JSM – Soup Bumbles

We can solve for the wavelength in the film! We start with the equation for the index of refraction.

We’ll call the wavelength in the film f. This means that the minimum thickness is given by:

Example: