Table 1 Complexes Involved in RNApII PIC assembly. Protein complex Functions RNApII 12 Subunits; catalyzes transcription of all mRNAs and a subset of noncoding.

Slides:



Advertisements
Similar presentations
©2000 Timothy G. Standish Transkripsi. All Genes Can’t be Expressed At The Same Time Some gene products are needed by all cells all the time. These constitutive.
Advertisements

Transcription of viral DNAs. Lecture 14 Flint et al. pp. 253 – 277.
3B1 Gene regulation results in differential GENE EXPRESSION, LEADING TO CELL SPECIALIZATION.
©2001 Timothy G. Standish Psalm 102:25 25In the beginning you laid the foundations of the earth, and the heavens are the work of your hands.
Transcription Transcription of DNA into RNA DNA transcription produces a single-stranded RNA molecule that is complementary to one strand of DNA.
Chap. 7 Transcriptional Control of Gene Expression (Part A) Topics Control of Gene Expression in Bacteria Overview of Eukaryotic Gene Control and RNA Polymerases.
Chapter 13 Transcription RNA in the Primeval World What came first proteins or nucleic acids? or chicken Or the……… EGG! Life’s Paradox…
Assembly of RNA polymerase II preinitiation complex Heather Drilling.
Molecular Biology Fourth Edition
Exon selection factor Exon selection factor U2 snRNPU1 snRNP Intron 1 Overview of mRNA Splicing Exon 1 AGGU Exon 2 A AGG Factors such as U1 and U2 snRNP.
Mechanism of Transcription
I. Overview of Eukaryotic gene regulation Mechanisms similar to those found in bacteria- most genes controlled at the transcriptional level Much more complex.
Lecture 6 of Introduction to Molecular Biology 生理所 蔡少正
COUPLING BETWEEN TRANSCRIPTION AND mRNA PROCESSING.
Transcription Co-activator Family Proteins
Molecular Biology Fifth Edition
The SV40 Promoter Enhancer GC boxes (6) TATA box.
Transcription.
Section M Transcription in Eukaryotes
Transcription AHMP 5406.
Genetic Information Flow: Transcription of Class I, II and III genes
Plant Nuclear Gene Expression & Regulation
MCB 317 Genetics and Genomics MCB 317 Topic 10, part 2, A Story of Transcription.
LECTURE CONNECTIONS 13 | Transcription © 2009 W. H. Freeman and Company.
Transcription in eukaryotes
Mechanism of activation. Models for mechansim of activation Direct contact between an activator and RNA polymerase or GTF Indirect interactions –Adaptor.
Section M: Transcription in EukaryotesYang Xu, College of Life Sciences Section M Transcription in Eukaryotes M1 The three RNA polmerases: Characterization.
M4 RNA Pol II genes: promoters and enhancers -----RNA Polymerase II (RNA Pol II) is located in the nucleoplasm. It is responsible for the transcription.
©2001 Timothy G. Standish Psalm 102:24 25In the beginning you laid the foundations of the earth, and the heavens are the work of your hands.
Three RNA polymerases in eukaryotes. RNA polymerase III Hundreds of promoters - 40% of a cell transcriptional activity -Moderately sensitive to  -amanitin.
Controlling the genes Lecture 15 pp Gene Expression Nearly all human cells have a nucleus (not red blood cells) Almost all these nucleated cells.
Copyright  2005 McGraw-Hill Australia Pty Ltd PPTs t/a Biology: An Australian focus 3e by Knox, Ladiges, Evans and Saint 11-1 Chapter 11: Gene expression.
Mechanisms of Transcription 生物学基地班 魏昌勇.
Chap. 7 Transcriptional Control of Gene Expression (Part B)
Regulating transcription
RNA Structure –Exon/intron –Cap & tail –Secondary structure Synthesis –Promoter complex –Transcription complex –Splicing Regulation –Promoter elements.
Transcription in prokaryotes
General Transcription Factors in Eukaryotes
Gene Expression Eukaryotic Gene Transcription 9/18/08 Thomas Ryan, Ph
Mechanisms of transcription By ZhaoYi 生物学基地班
CHAPTER 16 LECTURE SLIDES
Gene expression in eukaryotes 1. Eukaryotic RNA polymerases 2. Regulation of eukaryotic RNP 3. Hormonal regulation 4. Histone acetylation.
Ch 11. General Transcription Factors in Eukaryotes.
Transcription and Post Transcription processing
General Transcription Initiation Factors. Assay for accurate initiation by bacterial RNA polymerase Promoter E. coli RNA pol holoenzyme + initiation elongation.
©2000 Timothy G. Standish Hebrews 1:1-2 1God, who at sundry times and in divers manners spake in time past unto the fathers by the prophets, 2Hath in these.
TRANSCRIPTIONAL REGULATORY PROTIENS ASSINGMENT ON.
Conclusions (last lecture)
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Control of Gene Expression in Bacteria
Factors Involved In RNA synthesis and processing Presented by Md. Anower Hossen ID: MS in Biotechnology.
© 2014 Pearson Education, Inc. Chapter 13 Mechanism of Transcription.
Promoters and Enhancers
Controlling the genes Lecture 15 pp
RNA and RNA world WHICH CAME FIRST, THE chicken or the egg? The biological silences have a variation: which came first, DNA or protein? You see, among.
Lecture 5. Transcription: DNA→RNA
Promoters and Enhancers
GENE REGULATION Key control mechanism for dictating cell phenotype
Regulating gene expression
Controlling Chromatin Structure
Overview of RNA Metabolism
Promoters and Enhancers
MB&B 208: Molecular Biology
Initiation of transcription by Pol I
Eukaryotic transcription initiation
Hebrews 1 1 God, who at sundry times and in divers manners spake in time past unto the fathers by the prophets, 2 Hath in these last days spoken unto us.
Proteins Kinases: Chromatin-Associated Enzymes?
Transcription initiation by RNA polymerase II at eukaryotic protein-coding genes involves the cooperative assembly on the core promoter of multiple distinct.
Update on glucocorticoid action and resistance
Presentation transcript:

Table 1 Complexes Involved in RNApII PIC assembly. Protein complex Functions RNApII 12 Subunits; catalyzes transcription of all mRNAs and a subset of noncoding RNAs including snoRNAs and miRNAs TFIIA 2–3 subunits; functions to counteract repressive effects of negative cofactors like NC2; acts as a coactivator by interacting with activators and components of the basal initiation machinery TFIIB Single subunit; stabilizes TFIID-promoter binding; aids in recruitment of TFIIF/Pol II to the promoter; directs accurate start site selection TFIID 14 subunits including TBP and TBP Associated Factors (TAFs); nucleates PIC assembly either through TBP binding to TATA sequences or TAF binding to other promoter sequences; coactivator activity through direct interaction of TAFs and gene specific activators TFIIE 2 subunits; helps recruit TFIIH to promoters; stimulates helicase and kinase activities of TFIIH; binds ssDNA and is essential for promoter melting TFIIF 2–3 subunits; tightly associates with RNApII; enhances affinity of RNApII for TBP-TFIIB-promoter complex; necessary for recruitment of TFIIE/TFIIH to the PIC; aids in start site selection and promoter escape; enhances elongation efficiency TFIIH 10 subunits; ATPase/helicase necessary for promoter opening and promoter clearance; helicase activity for transcription coupled DNA repair; kinase activity required for phosphorylation of RNApII CTD; facilitates transition from initiation to elongation Mediator At least 24 subunits; bridges interaction between activators and basal factors; stimulates both activator dependent and basal transcription; required for transcription from most RNApII dependent promoters SAGA 20 subunits; interacts with activators, histone H3, and TBP; histone acetyltransferase activity; deubiquitinating activity Trf1 TBP related factor identified in Drosophila; upregulated in CNS and gonads during development; can bind TATA sequences; mostly found at RNApIII dependent promoters as part of TFIIIB but also required at a subset of RNApII dependent promoters Trf2 TBP related factor identified in all metazoans; cannot bind TATA sequences; important for histone gene expression in Drosophila Trf3 TBP related factor identified in vertebrates; can bind TATA sequences; important for differentiation of muscle cells in mammals and for haematopoietic cell development in zebrafish. TFIIS 1 subunit; stimulates intrinsic transcript cleavage activity of RNApII allowing backtracking to resume RNA synthesis after transcription arrest; stimulates PIC assembly at some promoters NC2 2 subunits; binds TBP/DNA complexes and blocks PIC assembly; can have both positive and negative effects on transcription Mot1/bTAF1 1 subunit; induces dissociation of TBP/DNA complexes in ATP dependent manner; can have both positive and negative effects on transcription

Questions: 1.How does the PIC decide where to form? 2.Why isn’t the PIC sufficient for efficient gene expression? 3.How are PIC assembly and transcriptional activation controlled? PIC = Pre-initiation complex; this is the “business end” of the transcription apparatus.

Table 1 Complexes Involved in RNApII PIC assembly. Protein complex Functions RNApII 12 Subunits; catalyzes transcription of all mRNAs and a subset of noncoding RNAs including snoRNAs and miRNAs TFIIA 2–3 subunits; functions to counteract repressive effects of negative cofactors like NC2; acts as a coactivator by interacting with activators and components of the basal initiation machinery TFIIB Single subunit; stabilizes TFIID-promoter binding; aids in recruitment of TFIIF/Pol II to the promoter; directs accurate start site selection TFIID 14 subunits including TBP and TBP Associated Factors (TAFs); nucleates PIC assembly either through TBP binding to TATA sequences or TAF binding to other promoter sequences; coactivator activity through direct interaction of TAFs and gene specific activators TFIIE 2 subunits; helps recruit TFIIH to promoters; stimulates helicase and kinase activities of TFIIH; binds ssDNA and is essential for promoter melting TFIIF 2–3 subunits; tightly associates with RNApII; enhances affinity of RNApII for TBP-TFIIB-promoter complex; necessary for recruitment of TFIIE/TFIIH to the PIC; aids in start site selection and promoter escape; enhances elongation efficiency TFIIH 10 subunits; ATPase/helicase necessary for promoter opening and promoter clearance; helicase activity for transcription coupled DNA repair; kinase activity required for phosphorylation of RNApII CTD; facilitates transition from initiation to elongation Mediator At least 24 subunits; bridges interaction between activators and basal factors; stimulates both activator dependent and basal transcription; required for transcription from most RNApII dependent promoters SAGA 20 subunits; interacts with activators, histone H3, and TBP; histone acetyltransferase activity; deubiquitinating activity Trf1 TBP related factor identified in Drosophila; upregulated in CNS and gonads during development; can bind TATA sequences; mostly found at RNApIII dependent promoters as part of TFIIIB but also required at a subset of RNApII dependent promoters Trf2 TBP related factor identified in all metazoans; cannot bind TATA sequences; important for histone gene expression in Drosophila Trf3 TBP related factor identified in vertebrates; can bind TATA sequences; important for differentiation of muscle cells in mammals and for haematopoietic cell development in zebrafish. TFIIS 1 subunit; stimulates intrinsic transcript cleavage activity of RNApII allowing backtracking to resume RNA synthesis after transcription arrest; stimulates PIC assembly at some promoters NC2 2 subunits; binds TBP/DNA complexes and blocks PIC assembly; can have both positive and negative effects on transcription Mot1/bTAF1 1 subunit; induces dissociation of TBP/DNA complexes in ATP dependent manner; can have both positive and negative effects on transcription

Image from euchromatin.org

Gnatt et al, (2001) Science, vol 292,

Table 1 Complexes Involved in RNApII PIC assembly. Protein complex Functions RNApII 12 Subunits; catalyzes transcription of all mRNAs and a subset of noncoding RNAs including snoRNAs and miRNAs TFIIA 2–3 subunits; functions to counteract repressive effects of negative cofactors like NC2; acts as a coactivator by interacting with activators and components of the basal initiation machinery TFIIB Single subunit; stabilizes TFIID-promoter binding; aids in recruitment of TFIIF/Pol II to the promoter; directs accurate start site selection TFIID 14 subunits including TBP and TBP Associated Factors (TAFs); nucleates PIC assembly either through TBP binding to TATA sequences or TAF binding to other promoter sequences; coactivator activity through direct interaction of TAFs and gene specific activators TFIIE 2 subunits; helps recruit TFIIH to promoters; stimulates helicase and kinase activities of TFIIH; binds ssDNA and is essential for promoter melting TFIIF 2–3 subunits; tightly associates with RNApII; enhances affinity of RNApII for TBP-TFIIB-promoter complex; necessary for recruitment of TFIIE/TFIIH to the PIC; aids in start site selection and promoter escape; enhances elongation efficiency TFIIH 10 subunits; ATPase/helicase necessary for promoter opening and promoter clearance; helicase activity for transcription coupled DNA repair; kinase activity required for phosphorylation of RNApII CTD; facilitates transition from initiation to elongation Mediator At least 24 subunits; bridges interaction between activators and basal factors; stimulates both activator dependent and basal transcription; required for transcription from most RNApII dependent promoters SAGA 20 subunits; interacts with activators, histone H3, and TBP; histone acetyltransferase activity; deubiquitinating activity Trf1 TBP related factor identified in Drosophila; upregulated in CNS and gonads during development; can bind TATA sequences; mostly found at RNApIII dependent promoters as part of TFIIIB but also required at a subset of RNApII dependent promoters Trf2 TBP related factor identified in all metazoans; cannot bind TATA sequences; important for histone gene expression in Drosophila Trf3 TBP related factor identified in vertebrates; can bind TATA sequences; important for differentiation of muscle cells in mammals and for haematopoietic cell development in zebrafish. TFIIS 1 subunit; stimulates intrinsic transcript cleavage activity of RNApII allowing backtracking to resume RNA synthesis after transcription arrest; stimulates PIC assembly at some promoters NC2 2 subunits; binds TBP/DNA complexes and blocks PIC assembly; can have both positive and negative effects on transcription Mot1/bTAF1 1 subunit; induces dissociation of TBP/DNA complexes in ATP dependent manner; can have both positive and negative effects on transcription

Eukaryotic Basal DNA elements: TATA element (TATA) Initiator element (INR) Downstream Promoter element (DPE) TFIIB recognition element (BRE) Any given eukaryotic promoter will have one or more of these elements, but seldom all of them. The PIC can thus be recruited to different promoters in different Ways.

Table 1 Complexes Involved in RNApII PIC assembly. Protein complex Functions RNApII 12 Subunits; catalyzes transcription of all mRNAs and a subset of noncoding RNAs including snoRNAs and miRNAs TFIIA 2–3 subunits; functions to counteract repressive effects of negative cofactors like NC2; acts as a coactivator by interacting with activators and components of the basal initiation machinery TFIIB Single subunit; stabilizes TFIID-promoter binding; aids in recruitment of TFIIF/Pol II to the promoter; directs accurate start site selection TFIID 14 subunits including TBP and TBP Associated Factors (TAFs); nucleates PIC assembly either through TBP binding to TATA sequences or TAF binding to other promoter sequences; coactivator activity through direct interaction of TAFs and gene specific activators TFIIE 2 subunits; helps recruit TFIIH to promoters; stimulates helicase and kinase activities of TFIIH; binds ssDNA and is essential for promoter melting TFIIF 2–3 subunits; tightly associates with RNApII; enhances affinity of RNApII for TBP-TFIIB-promoter complex; necessary for recruitment of TFIIE/TFIIH to the PIC; aids in start site selection and promoter escape; enhances elongation efficiency TFIIH 10 subunits; ATPase/helicase necessary for promoter opening and promoter clearance; helicase activity for transcription coupled DNA repair; kinase activity required for phosphorylation of RNApII CTD; facilitates transition from initiation to elongation Mediator At least 24 subunits; bridges interaction between activators and basal factors; stimulates both activator dependent and basal transcription; required for transcription from most RNApII dependent promoters SAGA 20 subunits; interacts with activators, histone H3, and TBP; histone acetyltransferase activity; deubiquitinating activity Trf1 TBP related factor identified in Drosophila; upregulated in CNS and gonads during development; can bind TATA sequences; mostly found at RNApIII dependent promoters as part of TFIIIB but also required at a subset of RNApII dependent promoters Trf2 TBP related factor identified in all metazoans; cannot bind TATA sequences; important for histone gene expression in Drosophila Trf3 TBP related factor identified in vertebrates; can bind TATA sequences; important for differentiation of muscle cells in mammals and for haematopoietic cell development in zebrafish. TFIIS 1 subunit; stimulates intrinsic transcript cleavage activity of RNApII allowing backtracking to resume RNA synthesis after transcription arrest; stimulates PIC assembly at some promoters NC2 2 subunits; binds TBP/DNA complexes and blocks PIC assembly; can have both positive and negative effects on transcription Mot1/bTAF1 1 subunit; induces dissociation of TBP/DNA complexes in ATP dependent manner; can have both positive and negative effects on transcription

TFIID is a major player in transcriptional initiation. Thought to nucleate PIC assembly through TBP binding to DNA. Its composition can change depending on which subunits are included (see next fig). About 10% of genes are dependent on SAGA rather than TFIID. SAGA TFIID are probably homologous. SAGA also includes TBP. Is TFIID required for every round of transcription? TFIID

Cler et al, (2009) Cell Mol Lif Sci, vol 66,

Table 1 Complexes Involved in RNApII PIC assembly. Protein complex Functions RNApII 12 Subunits; catalyzes transcription of all mRNAs and a subset of noncoding RNAs including snoRNAs and miRNAs TFIIA 2–3 subunits; functions to counteract repressive effects of negative cofactors like NC2; acts as a coactivator by interacting with activators and components of the basal initiation machinery TFIIB Single subunit; stabilizes TFIID-promoter binding; aids in recruitment of TFIIF/Pol II to the promoter; directs accurate start site selection TFIID 14 subunits including TBP and TBP Associated Factors (TAFs); nucleates PIC assembly either through TBP binding to TATA sequences or TAF binding to other promoter sequences; coactivator activity through direct interaction of TAFs and gene specific activators TFIIE 2 subunits; helps recruit TFIIH to promoters; stimulates helicase and kinase activities of TFIIH; binds ssDNA and is essential for promoter melting TFIIF 2–3 subunits; tightly associates with RNApII; enhances affinity of RNApII for TBP-TFIIB-promoter complex; necessary for recruitment of TFIIE/TFIIH to the PIC; aids in start site selection and promoter escape; enhances elongation efficiency TFIIH 10 subunits; ATPase/helicase necessary for promoter opening and promoter clearance; helicase activity for transcription coupled DNA repair; kinase activity required for phosphorylation of RNApII CTD; facilitates transition from initiation to elongation Mediator At least 24 subunits; bridges interaction between activators and basal factors; stimulates both activator dependent and basal transcription; required for transcription from most RNApII dependent promoters SAGA 20 subunits; interacts with activators, histone H3, and TBP; histone acetyltransferase activity; deubiquitinating activity Trf1 TBP related factor identified in Drosophila; upregulated in CNS and gonads during development; can bind TATA sequences; mostly found at RNApIII dependent promoters as part of TFIIIB but also required at a subset of RNApII dependent promoters Trf2 TBP related factor identified in all metazoans; cannot bind TATA sequences; important for histone gene expression in Drosophila Trf3 TBP related factor identified in vertebrates; can bind TATA sequences; important for differentiation of muscle cells in mammals and for haematopoietic cell development in zebrafish. TFIIS 1 subunit; stimulates intrinsic transcript cleavage activity of RNApII allowing backtracking to resume RNA synthesis after transcription arrest; stimulates PIC assembly at some promoters NC2 2 subunits; binds TBP/DNA complexes and blocks PIC assembly; can have both positive and negative effects on transcription Mot1/bTAF1 1 subunit; induces dissociation of TBP/DNA complexes in ATP dependent manner; can have both positive and negative effects on transcription

TFIIH TFIIH has three enzymatic activities: 2 helicases (for promoter opening and for DNA repair) 1 kinase (for phosphorylating CTD of RNA pol II) Involved in transitioning from initiation to elongation.

Keep in mind: Basal transcription factors (ie PIC) don’t transcribe chromatin templates. Basal transcription factors don’t respond to activators. This raises the level of complexity, and provides avenues for regulation, in two ways. See upcoming lectures by: Whitehouse (chromatin) DiGregorio and Pertsinidis (activators and regulatory modules)

Table 1 Complexes Involved in RNApII PIC assembly. Protein complex Functions RNApII 12 Subunits; catalyzes transcription of all mRNAs and a subset of noncoding RNAs including snoRNAs and miRNAs TFIIA 2–3 subunits; functions to counteract repressive effects of negative cofactors like NC2; acts as a coactivator by interacting with activators and components of the basal initiation machinery TFIIB Single subunit; stabilizes TFIID-promoter binding; aids in recruitment of TFIIF/Pol II to the promoter; directs accurate start site selection TFIID 14 subunits including TBP and TBP Associated Factors (TAFs); nucleates PIC assembly either through TBP binding to TATA sequences or TAF binding to other promoter sequences; coactivator activity through direct interaction of TAFs and gene specific activators TFIIE 2 subunits; helps recruit TFIIH to promoters; stimulates helicase and kinase activities of TFIIH; binds ssDNA and is essential for promoter melting TFIIF 2–3 subunits; tightly associates with RNApII; enhances affinity of RNApII for TBP-TFIIB-promoter complex; necessary for recruitment of TFIIE/TFIIH to the PIC; aids in start site selection and promoter escape; enhances elongation efficiency TFIIH 10 subunits; ATPase/helicase necessary for promoter opening and promoter clearance; helicase activity for transcription coupled DNA repair; kinase activity required for phosphorylation of RNApII CTD; facilitates transition from initiation to elongation Mediator At least 24 subunits; bridges interaction between activators and basal factors; stimulates both activator dependent and basal transcription; required for transcription from most RNApII dependent promoters SAGA 20 subunits; interacts with activators, histone H3, and TBP; histone acetyltransferase activity; deubiquitinating activity Trf1 TBP related factor identified in Drosophila; upregulated in CNS and gonads during development; can bind TATA sequences; mostly found at RNApIII dependent promoters as part of TFIIIB but also required at a subset of RNApII dependent promoters Trf2 TBP related factor identified in all metazoans; cannot bind TATA sequences; important for histone gene expression in Drosophila Trf3 TBP related factor identified in vertebrates; can bind TATA sequences; important for differentiation of muscle cells in mammals and for haematopoietic cell development in zebrafish. TFIIS 1 subunit; stimulates intrinsic transcript cleavage activity of RNApII allowing backtracking to resume RNA synthesis after transcription arrest; stimulates PIC assembly at some promoters NC2 2 subunits; binds TBP/DNA complexes and blocks PIC assembly; can have both positive and negative effects on transcription Mot1/bTAF1 1 subunit; induces dissociation of TBP/DNA complexes in ATP dependent manner; can have both positive and negative effects on transcription

Mediator Basal Factor or not? Not required for basal activity in vitro, but it can stimulate this activity. It has been proposed to stimulate phosphorylation of the CTD of RNA pol II (see Shuman lecture). Its composition can change depending on which subunits are included (again……). Might also act by stimulating reinitiation.

D’Alessio et al, (2009) Mol Cell, vol 36,

Table 1 Complexes Involved in RNApII PIC assembly. Protein complex Functions RNApII 12 Subunits; catalyzes transcription of all mRNAs and a subset of noncoding RNAs including snoRNAs and miRNAs TFIIA 2–3 subunits; functions to counteract repressive effects of negative cofactors like NC2; acts as a coactivator by interacting with activators and components of the basal initiation machinery TFIIB Single subunit; stabilizes TFIID-promoter binding; aids in recruitment of TFIIF/Pol II to the promoter; directs accurate start site selection TFIID 14 subunits including TBP and TBP Associated Factors (TAFs); nucleates PIC assembly either through TBP binding to TATA sequences or TAF binding to other promoter sequences; coactivator activity through direct interaction of TAFs and gene specific activators TFIIE 2 subunits; helps recruit TFIIH to promoters; stimulates helicase and kinase activities of TFIIH; binds ssDNA and is essential for promoter melting TFIIF 2–3 subunits; tightly associates with RNApII; enhances affinity of RNApII for TBP-TFIIB-promoter complex; necessary for recruitment of TFIIE/TFIIH to the PIC; aids in start site selection and promoter escape; enhances elongation efficiency TFIIH 10 subunits; ATPase/helicase necessary for promoter opening and promoter clearance; helicase activity for transcription coupled DNA repair; kinase activity required for phosphorylation of RNApII CTD; facilitates transition from initiation to elongation Mediator At least 24 subunits; bridges interaction between activators and basal factors; stimulates both activator dependent and basal transcription; required for transcription from most RNApII dependent promoters SAGA 20 subunits; interacts with activators, histone H3, and TBP; histone acetyltransferase activity; deubiquitinating activity Trf1 TBP related factor identified in Drosophila; upregulated in CNS and gonads during development; can bind TATA sequences; mostly found at RNApIII dependent promoters as part of TFIIIB but also required at a subset of RNApII dependent promoters Trf2 TBP related factor identified in all metazoans; cannot bind TATA sequences; important for histone gene expression in Drosophila Trf3 TBP related factor identified in vertebrates; can bind TATA sequences; important for differentiation of muscle cells in mammals and for haematopoietic cell development in zebrafish. TFIIS 1 subunit; stimulates intrinsic transcript cleavage activity of RNApII allowing backtracking to resume RNA synthesis after transcription arrest; stimulates PIC assembly at some promoters NC2 2 subunits; binds TBP/DNA complexes and blocks PIC assembly; can have both positive and negative effects on transcription Mot1/bTAF1 1 subunit; induces dissociation of TBP/DNA complexes in ATP dependent manner; can have both positive and negative effects on transcription

SAGA Our first mention of histone modifying activity. As mentioned earlier, can substitute (and might be related to) TFIID. Like Mediator, it can interact with both activators and TBP, acting as a bridging molecule.

Baker and Grant, (2007) Oncogene, vol 26,

Table 1 Complexes Involved in RNApII PIC assembly. Protein complex Functions RNApII 12 Subunits; catalyzes transcription of all mRNAs and a subset of noncoding RNAs including snoRNAs and miRNAs TFIIA 2–3 subunits; functions to counteract repressive effects of negative cofactors like NC2; acts as a coactivator by interacting with activators and components of the basal initiation machinery TFIIB Single subunit; stabilizes TFIID-promoter binding; aids in recruitment of TFIIF/Pol II to the promoter; directs accurate start site selection TFIID 14 subunits including TBP and TBP Associated Factors (TAFs); nucleates PIC assembly either through TBP binding to TATA sequences or TAF binding to other promoter sequences; coactivator activity through direct interaction of TAFs and gene specific activators TFIIE 2 subunits; helps recruit TFIIH to promoters; stimulates helicase and kinase activities of TFIIH; binds ssDNA and is essential for promoter melting TFIIF 2–3 subunits; tightly associates with RNApII; enhances affinity of RNApII for TBP-TFIIB-promoter complex; necessary for recruitment of TFIIE/TFIIH to the PIC; aids in start site selection and promoter escape; enhances elongation efficiency TFIIH 10 subunits; ATPase/helicase necessary for promoter opening and promoter clearance; helicase activity for transcription coupled DNA repair; kinase activity required for phosphorylation of RNApII CTD; facilitates transition from initiation to elongation Mediator At least 24 subunits; bridges interaction between activators and basal factors; stimulates both activator dependent and basal transcription; required for transcription from most RNApII dependent promoters SAGA 20 subunits; interacts with activators, histone H3, and TBP; histone acetyltransferase activity; deubiquitinating activity Trf1 TBP related factor identified in Drosophila; upregulated in CNS and gonads during development; can bind TATA sequences; mostly found at RNApIII dependent promoters as part of TFIIIB but also required at a subset of RNApII dependent promoters Trf2 TBP related factor identified in all metazoans; cannot bind TATA sequences; important for histone gene expression in Drosophila Trf3 TBP related factor identified in vertebrates; can bind TATA sequences; important for differentiation of muscle cells in mammals and for haematopoietic cell development in zebrafish. TFIIS 1 subunit; stimulates intrinsic transcript cleavage activity of RNApII allowing backtracking to resume RNA synthesis after transcription arrest; stimulates PIC assembly at some promoters NC2 2 subunits; binds TBP/DNA complexes and blocks PIC assembly; can have both positive and negative effects on transcription Mot1/bTAF1 1 subunit; induces dissociation of TBP/DNA complexes in ATP dependent manner; can have both positive and negative effects on transcription

TFIIS Originally characterized as an elongation factor, however more recently shown to play a role in initiation and PIC formation as well.

Prather et al, (2005) Mol Cell Biol, vol 25,

Table 1 Complexes Involved in RNApII PIC assembly. Protein complex Functions RNApII 12 Subunits; catalyzes transcription of all mRNAs and a subset of noncoding RNAs including snoRNAs and miRNAs TFIIA 2–3 subunits; functions to counteract repressive effects of negative cofactors like NC2; acts as a coactivator by interacting with activators and components of the basal initiation machinery TFIIB Single subunit; stabilizes TFIID-promoter binding; aids in recruitment of TFIIF/Pol II to the promoter; directs accurate start site selection TFIID 14 subunits including TBP and TBP Associated Factors (TAFs); nucleates PIC assembly either through TBP binding to TATA sequences or TAF binding to other promoter sequences; coactivator activity through direct interaction of TAFs and gene specific activators TFIIE 2 subunits; helps recruit TFIIH to promoters; stimulates helicase and kinase activities of TFIIH; binds ssDNA and is essential for promoter melting TFIIF 2–3 subunits; tightly associates with RNApII; enhances affinity of RNApII for TBP-TFIIB-promoter complex; necessary for recruitment of TFIIE/TFIIH to the PIC; aids in start site selection and promoter escape; enhances elongation efficiency TFIIH 10 subunits; ATPase/helicase necessary for promoter opening and promoter clearance; helicase activity for transcription coupled DNA repair; kinase activity required for phosphorylation of RNApII CTD; facilitates transition from initiation to elongation Mediator At least 24 subunits; bridges interaction between activators and basal factors; stimulates both activator dependent and basal transcription; required for transcription from most RNApII dependent promoters SAGA 20 subunits; interacts with activators, histone H3, and TBP; histone acetyltransferase activity; deubiquitinating activity Trf1 TBP related factor identified in Drosophila; upregulated in CNS and gonads during development; can bind TATA sequences; mostly found at RNApIII dependent promoters as part of TFIIIB but also required at a subset of RNApII dependent promoters Trf2 TBP related factor identified in all metazoans; cannot bind TATA sequences; important for histone gene expression in Drosophila Trf3 TBP related factor identified in vertebrates; can bind TATA sequences; important for differentiation of muscle cells in mammals and for haematopoietic cell development in zebrafish. TFIIS 1 subunit; stimulates intrinsic transcript cleavage activity of RNApII allowing backtracking to resume RNA synthesis after transcription arrest; stimulates PIC assembly at some promoters NC2 2 subunits; binds TBP/DNA complexes and blocks PIC assembly; can have both positive and negative effects on transcription Mot1/bTAF1 1 subunit; induces dissociation of TBP/DNA complexes in ATP dependent manner; can have both positive and negative effects on transcription

Repressors: Mot1/bTAF1 and NC2 These proteins affect TBP/DNA binding by either blocking PIC assembly or inducing dissociation of TBP from the DNA. Counter-intuitively, these can act as activators by preventing or reducing in appropriate binding of PIC to cryptic promoters, thus making more PIC available for activation of appropriate promoters.

van Werven et al, (2009) Genes and Development, vol 22,

D’Alessio et al, (2009) Mol Cell, vol 36,

Model of “Regulated Recruitment”

Potential mechanisms of transcriptional activation : 1.Regulated Recruitment: proteins bind to DNA and recruit an active polymerase complex to the promoter. 2. Polymerase Activation: proteins bind to DNA and activate a pre-bound, inactive polymerase complex, thus initiating transcription. 3. Promoter Activation: proteins bind to DNA and induce a conformational change in the DNA, twisting it into a active state that allows a transcriptionally active polymerase can bind. (Figures and concepts taken from Ptashne, M. and Gann, A. (2002) Genes and Signals. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA.)