SFLASH  SASE interference setup & optics rough estimation 1d estimation 3d estimation summary.

Slides:



Advertisements
Similar presentations
Schemes for generation of attosecond pulses in X-ray FELs E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov The potential for the development of XFEL beyond.
Advertisements

Erdem Oz* USC E-164X,E167 Collaboration Plasma Dark Current in Self-Ionized Plasma Wake Field Accelerators
Soft X-ray Self-Seeding
BC System – Review Options ● BC2 working point (energy-charge-compr.) ● 2BC (rf-rf-bc-rf-bc-rf) ● table: 2BC (rf-rf-bc-rf-bc-rf) dogleg + 2BC (rf-dog-rf-rf-bc-rf-bc-rf)
1 Optimal focusing lattice for XFEL undulators: Numerical simulations Vitali Khachatryan, Artur Tarloyan CANDLE, DESY/MPY
Cavity Field Maps (TESLA & 3 rd Harmonic Cavity) Undulator Wakes Estimation of CSR Effects for FLASH2HGHG.
1 Bates XFEL Linac and Bunch Compressor Dynamics 1. Linac Layout and General Beam Parameter 2. Bunch Compressor –System Details (RF, Magnet Chicane) –Linear.
E. Schneidmiller and M. Yurkov (SASE & MCP) C. Behrens, W. Decking, H. Delsim, T. Limberg, R. Kammering (rf & LOLA) N. Guerassimova and R. Treusch (PGM.
P. Emma LCLS FAC 12 Oct Comments from LCLS FAC Meeting (April 2004): J. Roßbach:“How do you detect weak FEL power when the.
Performance Analysis Using Genesis 1.3 Sven Reiche LCLS Undulator Parameter Workshop Argonne National Laboratory 10/24/03.
Comments from LCLS FAC Meeting (April 2004): J. Rößbach:“How do you detect weak FEL power when the gain is very low (few hundred)?” K. Robinson:“Can you.
EuroNNAc Workshop, CERN, May 2011 External Injection at INFN-LNF ( integrating RF photo-injectors with LWFA ) Luca Serafini - INFN/Milano High Brightness.
LCLS-II Transverse Tolerances Tor Raubenheimer May 29, 2013.
The impact of undulators in an ERL Jim Clarke ASTeC, STFC Daresbury Laboratory FLS 2012, March 2012.
+ SwissFEL Introduction to Free Electron Lasers Bolko Beutner, Sven Reiche
TTF2 Start-to-End Simulations Jean-Paul Carneiro DESY Hamburg TESLA COLLABORATION MEETING DESY Zeuthen, 22 Jan 2004.
A. Doyuran, L. DiMauro, W. Graves, R. Heese, E. D. Johnson, S. Krinsky, H. Loos, J.B. Murphy, G. Rakowsky, J. Rose, T. Shaftan, B. Sheehy, Y. Shen, J.
1 By Vladyslav Syrotenko (student of V. N. Karazin Kharkiv National University, School of Physics and Technology) Supervised by P. Piot, T. Sen, F. Ostiguy.
S2E in LCLS Linac M. Borland, Lyncean Technologies, P. Emma, C. Limborg, SLAC.
Two Longitudinal Space Charge Amplifiers and a Poisson Solver for Periodic Micro Structures Longitudinal Space Charge Amplifier 1: Longitudinal Space Charge.
Simulation of Microbunching Instability in LCLS with Laser-Heater Linac Coherent Light Source Stanford Synchrotron Radiation Laboratory.
FLASH II. The results from FLASH II tests Sven Ackermann FEL seminar Hamburg, April 23 th, 2013.
Beam Dynamics and FEL Simulations for FLASH Igor Zagorodnov and Martin Dohlus Beam Dynamics Meeting, DESY.
Optics with SC horizontal vertical BC0BC1BC2 XFEL, design optics.
A bunch compressor design and several X-band FELs Yipeng Sun, ARD/SLAC , LCLS-II meeting.
Max Cornacchia, SLAC LCLS Project Overview BESAC, Feb , 2001 LCLS Project Overview What is the LCLS ? Transition from 3 rd generation light sources.
External Seeding Approaches: S2E studies for LCLS-II Gregg Penn, LBNL CBP Erik Hemsing, SLAC August 7, 2014.
M. Hosaka a, M. Katoh b, C. Szwaj c, H. Zen b M. Adachi b, S. Bielawski c, C. Evain c M. Le Parquier c, Y. Takashima a,Y. Tanikawa b Y. Taira b, N. Yamamoto.
Beam Dynamics Meeting Bolko Beutner, DESY Summary of new FLASH CSR studies Bolko Beutner, DESY Beam Dynamics Meeting
XFEL Beam Dynamics Meeting Bolko Beutner, DESY Velocity Bunching Studies at FLASH Bolko Beutner, DESY XFEL Beam Dynamics Meeting
Harmonic lasing in the LCLS-II (a work in progress…) G. Marcus, et al. 03/11/2014.
W.S. Graves 2002 Berlin CSR workshop 1 Microbunching and CSR experiments at BNL’s Source Development Lab William S. Graves ICFA CSR Workshop Berlin, Jan.,
‘S2E’ Study of Linac for TESLA XFEL P. Emma SLAC  Tracking  Comparison to LCLS  Re-optimization  Tolerances  Jitter  CSR Effects.
The Next Generation Light Source Test Facility at Daresbury Jim Clarke ASTeC, STFC Daresbury Laboratory Ultra Bright Electron Sources Workshop, Daresbury,
Jörn Bödewadt Recent Results of Seeding at FLASH Supported by BMBF under contract 05K13GU4 and 05K13PE3 DFG GrK 1355 Joachim Herz Stiftung Helmholtz Accelererator.
Design Considerations of table-top FELs laser-plasma accelerators principal possibility of table-top FELs possible VUV and X-ray scenarios new experimental.
UCLA Claudio Pellegrini UCLA Department of Physics and Astronomy X-ray Free-electron Lasers Ultra-fast Dynamic Imaging of Matter II Ischia, Italy, 4/30-5/3/
Transverse Gradient Undulator and its applications to Plasma-Accelerator Based FELs Zhirong Huang (SLAC) Introduction TGU concept, theory, technology Soft.
The Microbunching Instability in the LCLS-II Linac LCLS-II Planning Meeting October 23, 2013 A. Marinelli and Z. Huang.
Lessons Learned From the First Operation of the LCLS for Users Presented by Josef Frisch For the LCLS March 14, 2010.
Awake electron beam requirements ParameterBaseline Phase 2Range to check Beam Energy16 MeV MeV Energy spread (  ) 0.5 %< 0.5 % ? Bunch Length (
Computational Needs for the XFEL Martin Dohlus DESY, Hamburg.
FEL Spectral Measurements at LCLS J. Welch FEL2011, Shanghai China, Aug. 25 THOB5.
Injector Requirements Linac Coherent Light Source Stanford Linear Accelerator Center Technical Review, March 1st, 2004 Cécile.
What did we learn from TTF1 FEL? P. Castro (DESY).
Microbunching Instability and Slice Energy Spread
WIR SCHAFFEN WISSEN – HEUTE FÜR MORGEN Enhanced X-ray FEL performance from tilted electron beams Eduard Prat, Simona Bettoni and Sven Reiche :: Paul Scherrer.
PAL-XFEL Commissioning Plan ver. 1.1, August 2015 PAL-XFEL Beam Dynamics Group.
Applications of transverse deflecting cavities in x-ray free-electron lasers Yuantao Ding SLAC National Accelerator Laboratory7/18/2012.
DEC  x / m  y / m quads undulators vertical correctors chicane 1chicane 2chicane 3.
LSC/CSR Instability Introduction (origin of the instability) CSR/LSC
Seeding in the presence of microbunching
Eduard Prat / Sven Reiche :: Paul Scherrer Institute
Beam dynamics for an X-band LINAC driving a 1 keV FEL
Review of Application to SASE-FELs
Free Electron Lasers (FEL’s)
F. Villa Laboratori Nazionali di Frascati - LNF On behalf of Sparc_lab
Not a Talk, just a contribution to the discussions.
G. Marcus, Y. Ding, J. Qiang 02/06/2017
calculation with 107 particles
Simulation Calculations
Z. Huang LCLS Lehman Review May 14, 2009
Two-bunch self-seeding for narrow-bandwidth hard x-ray FELs
SASE FEL PULSE DURATION ANALYSIS FROM SPECTRAL CORRELATION FUNCTION
Design of Compression and Acceleration Systems Technical Challenges
Modified Beam Parameter Range
Gain Computation Sven Reiche, UCLA April 24, 2002
Achieving Required Peak Spectral Brightness Relative Performance for Four Undulator Technologies Neil Thompson WP5 – 20/03/19.
Introduction to Free Electron Lasers Zhirong Huang
Electron Optics & Bunch Compression
Presentation transcript:

sFLASH  SASE interference setup & optics rough estimation 1d estimation 3d estimation summary

setup & optics from

q  0.3 nC estimated electron beam properties estimated photon beam properties I peak  1.5 kC E  585 MeV  E rms  150 keV  n  1.5 µm modulator undulator K = 4.3 L = 1.45 m

modulation amplitude 19 nm undulator laser

 x / m  y / m quads undulators vertical correctors chicane 1chicane 2chicane 3

12 (1) - energy modulation rough estimation (saturation) (2) - conversion to density modulation, chicane 1, r56 c1 = 220 µm

23 (2  3) - discrete impedance, L  23 m,  av  10 m if linear: from  15 amplification of energy modulation (3) - chicane 1, r56 c3 = 170 µm  10 amplification of density modulation 4 (3  4) - discrete impedance, L  16 m,  av  10 m

1d estimation discrete modulation 1  2discrete impedance, L = 2.6 m,  av = 10.6 m 2discrete longitudinal dispersion, chicane 1, r56 = 220 µm 2  3discrete impedance, L = 4.7 m,  av = 10.1 m 3discrete longitudinal dispersion, chicane 2, r56 = 3 µm 3  4discrete impedance, L = 17.7 m,  av = 7.7 m 4discrete longitudinal dispersion, chicane 3, r56 = 170 µm 4  5discrete impedance, L = 16.3 m,  av = 9.8 m

40E6 macro particles space charge interaction: discrete, 1d energy modulation: discrete in middle of modulator no CSR interaction next slide:explore linear domain initial modulation amplitude initial uncorrelated energy spread 1d estimation

longitudinal phase spacecurrent

same, but E rms = 150 keV

MeV non linear !!! ~ 3 MeV rms energy spread

MeV non linear !!! ~ 3.5 MeV rms energy spread

~ 3.5 MeV rms energy spread ~ 2 MeV rms 3D

3d estimation 20E6 macro particles space charge interaction: full 3d Poisson solver equidistant mesh: 15 µm × 15 µm × 800 nm/(10  ) step width: 2 cm (beam-line coordinate) modulation: E mod = 250 keV discrete in middle of modulator (= instantaneous) no CSR interaction

Emod = 250 keV 3D Calculation current bunch coordinate / m beam line coordinate / m

Emod = 250 keV 3D Calculation after chicane 1before chicane 2 Current / A   _rms / eV   / eV bunch coordinate / m rms spread in 400 nm “slice” ~ 2.5 m

after chicane 2before chicane 3 Emod = 250 keV 3D Calculation Current / A   _rms / eV   / eV bunch coordinate / m rms spread in 400 nm “slice” ~ 14.6 m

after chicane 3before SASE undulator Emod = 250 keV 3D Calculation Current / A   _rms / eV   / eV bunch coordinate / m rms spread in 400 nm “slice” ~ 14.2 m ~ 2 MeV rms 50 µm, 170 fsec 15 µm, 50 fsec

current / A bunch coordinate  1E-4 / m beam line coordinate / m Emod = 250 keV 3D Calculation

current/A beam line coordinate/ m bunch coordinate/ m current/A beam line coordinate/ m “side view” period of plasma oscillation  120 m

summary modulator: 1d estimation (without plasma osc.) : 3d estimation: gain length (Ming Xie) linear gain ~ 100 saturation even with minimal modulation plasma oscillations, period  120 m weak amplification in 30 m SASE undulator

First Shot at Statistics Assume laser pulse eliminates lasing within FWHM completely Take a few hundred SASE simulation results (0.25 nC) and apply the above Let the ‘laser pulse’ jitter by about 100 fs

Comparison to Observation The rough estimate Observed behavior Electron macro pulse number Energy in photon pulse