Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular.

Slides:



Advertisements
Similar presentations
D.L. KOKKIN, N.J. REILLY, J.A. JOESTER, M. NAKAJIMA, K. NAUTA, S.H. KABLE and T.W. SCHMIDT Direct Observation of the c State of C 2 School of Chemistry,
Advertisements

Electronic transitions of ScP N. Wang, Y. W. Ng, K. F. Ng, and A. S.-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong.
Methyl Torsional Levels in 9-Methylanthracene
Terrance J. Codd*, John Stanton†, and Terry A. Miller* * The Laser Spectroscopy Facility, Department of Chemistry and Biochemistry The Ohio State University,
Rovibronic Analysis of the State of the NO 3 Radical Henry Tran, Terrance J. Codd, Dmitry Melnik, Mourad Roudjane, and Terry A. Miller Laser Spectroscopy.
MODERATE RESOLUTION JET COOLED CAVITY RINGDOWN SPECTROSCOPY OF THE A STATE OF NO 3 RADICAL Terrance J. Codd, Ming-Wei Chen, Mourad Roudjane and Terry A.
Anh T. Le and Timothy C. Steimle* The molecular frame electric dipole moment and hyperfine interaction in hafnium fluoride, HfF. Department of Chemistry.
LASER Induced Fluorescence of Iodine Eðlisefnafræði 5 – 30. mars 2006 Ómar Freyr Sigurbjörnsson.
Probing the electronic structure of the Nickel Monohalides: Spectroscopy of the low-lying electronic states of NiX (X=Cl, Br, I). Lloyd Muzangwa Molecular.
First high resolution analysis of the 5 3 band of nitrogen dioxide (NO 2 ) near 1.3 µm Didier Mondelain 1, Agnès Perrin 2, Samir Kassi 1 & Alain Campargue.
FTIR Spectroscopy of the n4 bands of 14NO3 and 15NO3
Funded by: NSF Timothy C. Steimle, Fang Wang a Arizona State University, USA & Joe Smallman b, Physics Imperial College, London a Currently at JILA THE.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
Laser spectroscopy of Iridium monophosphide H. F. Pang, Y. Xia, A. W. Liu and A. S-C. Cheung Department of Chemistry, The University of Hong Kong, Pokfulam.
Zhong Wang, Trevor Sears Department of Chemistry, Brookhaven National Laboratory; Department of Chemistry, Stony Brook University Ju Xin Department of.
Experiments with ultracold RbCs molecules Peter Molony Cs Rb.
ROTATIONALLY RESOLVED ELECTRONIC SPECTRA OF SECONDARY ALKOXY RADICALS 06/22/10 JINJUN LIU AND TERRY A. MILLER Laser Spectroscopy Facility Department of.
Fukuoka Univ. A. Nishiyama, A. Matsuba, M. Misono Doppler-Free Two-Photon Absorption Spectroscopy of Naphthalene Assisted by an Optical Frequency Comb.
Optical Zeeman Spectroscopy of the (0,0) bands of the B 3  -X 3  and A 3  -X 3  Transitions of Titanium Monoxide, TiO Wilton L. Virgo, Prof. Timothy.
THE ZEEMAN EFFECT IN THE OPTICAL SPECTRUM OF MANGANESE MONOHYDRIDE: MnH. Jamie Gengler and Timothy C. Steimle Department of Chemistry and Biochemistry.
Novel Applications of a Shape Sensitive Detector 2: Double Resonance Amanda Shirar Purdue University Molecular Spectroscopy Symposium June 19, 2008.
1 Ab initio and Infrared Studies of Carbon Dioxide Containing Complex Zheng Su and Yunjie Xu Department of Chemistry, University of Alberta, Edmonton,
Fourier-transform coherent anti-Stokes Raman scattering microscopy Jennifer P. Ogilvie et al. Opt. Lett. 31, 480 (2006) Kazuya MORI MIYASAKA Lab.
Electronic Transition of Ruthenium Monoxide Na Wang, Y. W. Ng and A. S.-C. Cheung Department of Chemistry The University of Hong Kong.
Electronic Spectroscopy of Palladium Dimer (Pd 2 ) 68th OSU International Symposium on Molecular Spectroscopy Yue Qian, Y. W. Ng and A. S-C. Cheung Department.
Fang Wang & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The 65 th International Symposium on Molecular Spectroscopy,
Electronic Transitions of Palladium Monoboride and Platinum Monoboride Y.W. Ng, H.F. Pang, Y. S. Wong, Yue Qian, and A. S-C. Cheung Department of Chemistry.
ULTRAHIGH-RESOLUTION SPECTROSCOPY OF DIBENZOFURAN S 1 ←S 0 TRANSITION SHUNJI KASAHARA 1, Michiru Yamawaki 1, and Masaaki Baba 2 1) Molecular Photoscience.
Electronic transitions of Yttrium Monoxide Allan S.-C. Cheung, Y. W. Ng, Na Wang and A. Clark Department of Chemistry University of Hong Kong OSU International.
The states of the C 3 -Ar and C 3 -Kr van der Waals Complexes: Fluorescence Polarization and Saturation Jun-Mei Chao, Kan-Sen Chen, Shin-Shin Cheng, Anthony.
62nd OSU International Symposium on Molecular Spectroscopy TA12 Laser Spectroscopy of Iridium Monoboride Jianjun Ye, H. F. Pang, A. M-Y. Wong, J. W-H.
DMITRY G. MELNIK AND TERRY A. MILLER The Ohio State University, Dept. of Chemistry, Laser Spectroscopy Facility, 120 W. 18th Avenue, Columbus, Ohio
LASER-INDUCED FLUORESCENCE (LIF) SPECTROSCOPY
A NEW ANALYSIS OF A VERY OLD SPECTRUM: THE HIGHLY PERTURBED A 2  i – X 2  i BAND SYSTEM OF THE CHLORINE CATION (Cl 2 ) Mohammed A. Gharaibeh and Dennis.
Structure and excited-state dynamics of the S1 B3u‐S0 Ag states of pyrene through high-resolution laser spectroscopy Yasuyuki Kowaka We study the vibrational,rotational.
K. Iwakuni, H. Sera, M. Abe, and H. Sasada Department of Physics, faculty of Science and Technology, Keio University, Japan 1 70 th. International Symposium.
Chuanxi Duan (段传喜) Central China Normal University Wuhan, China
Optical Zeeman Spectroscopy of Iron Monohydride, FeH Jinhai Chen, Timothy C. Steimle Department of Chemistry and Biochemistry, Arizona State University.
Triplet-Singlet Mixing in Si­ 3 : the 1 A A 2 Transition Ruohan Zhang and Timothy C. Steimle International Symposium on Molecular Spectroscopy 68.
D. Zhao, K.D. Doney, H. Linnartz Sackler Laboratory for Astrophysics, Leiden Observatory, University of Leiden, the Netherlands T he 3 μm Infrared Spectra.
OBSERVATION AND ANALYSIS OF THE A 1 -A 2 SPLITTING OF CH 3 D M. ABE*, H. Sera and H. SASADA Department of Physics, Faculty of Science and Technology, Keio.
The Origin Band of the b – a System of CH 2 Gregory Hall, and Trevor Sears Department of Chemistry Brookhaven National Laboratory Bor-Chen Chang Department.
Funded by: NSF-Exp. Timothy C. Steimle Hailing Wang & Anh Le Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA The A 2  -X 2  + Band System.
The optical spectrum of SrOH revisited: Zeeman effect, high- resolution spectroscopy and Franck- Condon factors TRUNG NGUYEN, DAMIAN L KOKKIN, TIMOTHY.
A. Nishiyama a, K. Nakashima b, A. Matsuba b, and M. Misono b a The University of Electro-Communications b Fukuoka University High Resolution Spectroscopy.
Laser Spectroscopy of the C 1 Σ + – X 1 Σ + Transition of ScI ZHENWU LIAO, MEI YANG, MAN-CHOR CHAN Department of Chemistry, The Chinese University of Hong.
OPTICAL-OPTICAL DOUBLE RESONANCE SPECTROSCOPY OF SrOH: THE 2 Π(000) – 2 Π(000) AND THE 2 Σ + (000) – 2 Π 1/2 (000) TRANSITIONS J.-G. WANG, P. M. SHERIDAN,
Yu-Shu Lin, Cheng-Chung Chen, and Bor-Chen Chang Department of Chemistry National Central University Chung-Li 32001, Taiwan ~ ~ Electronic Spectroscopy.
*Funded by: DoE-BES Xiujuan Zhuang, Timothy C. Steimle & Anh Le Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA* The Visible Spectrum of.
The 61 th International Symposium on Molecular Spectroscopy. ‘06 Funded by: NSF- Exp. Phys. Chem Mag. Hyperfine Interaction in 171 YbF and 173 YbF Timothy.
Laser spectroscopic study of CaH in the B 2 Σ + and D 2 Σ + state Kyohei Watanabe, Kanako Uchida, Kaori Kobayashi, Fusakazu Matsushima, Yoshiki Moriwaki.
Funded by: NSF-Exp. Tongmei Ma & Timothy C. Steimle Dept. Chem. & BioChem., Arizona State University, Tempe, AZ,USA Optical Zeeman Spectroscopy of ytterbium.
LASER INDUCED FLUORESCENCE SPECTROSCOPY OF THE SiNSi RADICAL II: IDENTIFICATIONS OF THE A2A1, B2B1, AND D2Sg+ STATES C. MOTOYOSHI, Y. SUMIYOSHI, Y. ENDO.
2 Univ. of Electro-Communications
ANH T. LE, GREGORY HALL, TREVOR SEARSa Division of Chemistry
Masaaki Baba (Kyoto University) Yosuke Semba Kazuto Yoshida
Spectroscopy in support of parity nonconservation measurements: the A2Π-X2Σ+(0,0) of Barium Monofluoride Anh T. Le, Sarah Frey and Timothy C. Steimle Department.
Doppler-free two-photon absorption spectroscopy of vibronic excited states of naphthalene assisted by an optical frequency comb UNIV. of Electro-Communications.
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Single Vibronic Level (SVL) emission spectroscopy of CHBr: Vibrational structure of the X1A and a3A  states.
Optical Stark Spectroscopy and Hyperfine study of Gold Sulfide (AuS)
Analysis of the Rotationally Resolved Spectra to the Degenerate (
Jinjun Liu, Ming-Wei Chen, John T. Yi,
(Kobe Univ. ) Takumi Nakano, Ryo Yamamoto, Shunji Kasahara
LIF Spectroscopy of Jet Cooled MgOH
High-resolution laser spectroscopy
Laser spectroscopy and ab initio calculations on TaF
High-resolution Laser Spectroscopy
Threshold Ionization and Spin-Orbit Coupling of CeO
OBSERVATION OF LEVEL-SPECIFIC PREDISSOCIATION RATES IN S1 ACETYLENE
Presentation transcript:

Rotationally-resolved high-resolution laser spectroscopy of the B 2 E’ – X 2 A 2 ’ transition of 14 NO 3 radical 69th International Symposium on Molecular Champaign-Urbana, Illinois, The United States 2014 / June / 16th MI13 Shunji Kasahara 1, Kohei Tada 1†, Takashi Ishiwata 2, and Eizi Hirota 3 1 Kobe University, Japan; 2 Hiroshima City University, Japan; 3 The Graduate University for Advanced Studies, Japan; † Research Fellow of Japan Society for the Promotion of Science.

Introduction Introduction D 3h Wavenumber / 1000 cm NO 2 + O NO 3 NO + O 2 O2 (b 1Σg+)O2 (b 1Σg+) O2 (a 1Δg)O2 (a 1Δg) O2 (X 3Σg-)O2 (X 3Σg-) B 2 E’ A 2 E’’ X 2A2’X 2A2’ Vibronic Band ~ cm -1 (~ 625 nm) Vibronic Band ~ cm -1 (~ 625 nm) 0-0 band ~ cm -1 (~ 662 nm) 0-0 band ~ cm -1 (~ 662 nm) B - X 遷移 K. Mikhaylichenko et al., J. Chem. Phys., 105, 6807 (1996) reaction coordinate NO 2 + O 3 → NO 3 + O 2 N 2 O 5 ⇄ NO 3 + NO 2 B 2 E’ : … (4e’) 3 (1e’’) 4 (1a 2 ) 2 ~ cm -1 A 2 E’’ : … (4e’) 4 (1e’’) 3 (1a 2 ) 2 ~ 7000 cm -1 X 2 A 2 ’ : … (4e’) 4 (1e’’) 4 (1a 2 ) 1 0 cm nm Absorption spectrum of 14 NO 3 (Visible) J. Chem. Soc. Faraday 1176, 785 (1980).

⑤ LIF and Absorption spectra of 14 NO 3 B-X transition Absorption spectrum of 14 NO 3 (Visible) J. Chem. Soc. Faraday 1176, 785 (1980) Wavenumber / cm -1 N 2 O 5 → NO 3 + NO 2 M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012) Resolution : 0.2 cm NO 3 B 2 E’-X 2 A 2 ’ transition

Wavenumber / cm Wavenumber / cm -1 LIF spectra of 14 NO 3 and 14 NO 2 N 2 O 5 → NO 3 + NO 2 R. E. Smalley et al., J. Chem. Phys., 63, 4977 (1975) Vibronic band band M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012) NO 2 Resolution : 0.2 cm -1 INTENSITY ×5 ? 14 NO 2 A 2 B 2 -X 2 A 1 transition (I max at cm -1 ) 14 NO 3 B 2 E’-X 2 A 2 ’ transition

D Exprimental setup Absolute wavenumber mesurement system (Accuracy : cm -1 ) Etalon Liq. N 2 Pump Pulsed Nozzle Skimmer ( ϕ = 2 mm) Filter N 2 O 5 → NO 3 + NO 2 Slit (2 mm) PBS Molecular Beam (Typical linewidth : cm -1 ) N 2 O 5 + Ar Computer 532 nm around 660 or 625 nm Single mode laser ( Γ = cm -1 ) PD BS : Beam splitter PBS : Polarization beam splitter EOM : Electro-optic modulator PD : Photo diode PMT : Photomultiplier tube BS EOM I 2 Cell Heater 300 ℃ NO 2 + He Ring Dye Laser Nd:YVO 4 Laser Mirror Heater off Photon Counter PMT

 ~ 150 strong (> 15% of max) lines and more than 3000 weak (< 15% of max) lines were observed. ← too many!  The rotational assignment was very difficult. (1) Combination difference → cm -1 line pairs (2) Zeeman effect → Unambiguous Assignment High-resolution LIF spectrum 14 NO 3 B-X 0-0 band at 662 nm 0.1 cm cm -1

σ-pump (H ⊥ E) ΔM J = ±1 π-pump (H // E) ΔM J = cm -1 Zeeman effect around cm G 70 G 100 G 160 G 190 G 220 G 305 G 40 G 70 G 100 G 160 G 190 G 220 G 305 G σ-pump: ΔM J = ±1 π-pump: ΔM J = 0 (σ:4+6/π:2+3) pair

Symmetry-adopted basis sets The X 2 A 2 ’ state: The B 2 E’ state: Hund’s case (b) basis Hund’s case (a) basis

The X 2 A 2 ’ state: H Z = g S μ B H·S The B 2 E’ state: H Z = g S μ B H·S + g L μ B H·L eff Refs: Endo et al., J. Chem. Phys., 81, 122 (1984) Hirota, High-Resolution Spectroscopy of Transient Molecules, Springer (1985) μ B (= ×10 -5 cm -1 G -1 ): Bohr magneton, g S : the electron spin g factor, g L : the electron orbital g factor, and ζ e d: the effective value of. Zeeman Hamiltonians and matrix elements

(σ:4+6/π:2+3) pair Zeeman splitting: transition to ( 2 E’ 3/2, J = 1.5) J = 1.5 ← 1.5 J = 1.5 ← 0.5 At 300 G – 0.5 – 1.5 – – 0.5 – 1.5 MJMJ σ-pump ΔM J = ±1 g S = (4) g S = 2.103(6) g L ζ e d = – 0.138(11) – – 0.5 – – 0.5 – 1.5 MJMJ Magnetic field / G Term energy / cm -1 J’ = 1.5 J” = 0.5 J” = 1.5 ΔMJ (MJ”)ΔMJ (MJ”)

σ-pump (H ⊥ E) ΔM J = ±1 π-pump (H // E) ΔM J = 0 Zeeman effect around cm G 360 G cm G 305 G 190 G cm -1 σ-pump: ΔM J = ±1 π-pump: ΔM J = 0 (σ:2+3/π:1+2) pair

H = 0 G 20 G 40 G 70 G 130 G190 G250 G300 G360 G σ-pump (H ⊥ E) ΔM J =±1 Energy / cm -1 J’’=1.5 J’’=0.5 J’=0.5 MJMJ ‐ ‐ ‐ ‐ 1.5 Magnetic field / Gauss B 2 E’ 1/2 X 2 A 2 ’(K’’=0 , N’’=1) σ-pump (H ⊥ E) Wavenumber / cm -1 Magnetic field / Gauss 70 Gauss The determined g-factors: lower: g S = (fixed) upper: g S = 1.892(26) g L ζ e d = 0.214(51) (σ:2+3/π:1+2) pair Zeeman splitting: transition to ( 2 E’ 1/2, J = 0.5) σ-pump : ● π-pump : ● Calc : ― M J = ‐ 0.5 M J = +0.5 Perturbation ?

2 E’ 3/2 2 E’ 1/2 2 A 2 ’ (K” = 0, N” = 1) J’ = 1.5 J’ = 0.5 J” = 0.5 J” = cm -1 QR R Q QP 2 E’ 3/2 ← 2 A 2 ’ : 7 transitions Assigned line pairs from the Zeeman splittings σ-pump: ΔM J = ±1 π-pump: ΔM J = 0 σ-pump: ΔM J = ±1 π-pump: ΔM J = 0 2 E’ 1/2 ← 2 A 2 ’ : 15 transitions

Wavenumber / cm Wavenumber / cm -1 N 2 O 5 → NO 3 + NO 2 R. E. Smalley et al., J. Chem. Phys., 63, 4977 (1975) M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012) NO 2⑤ Resolution : 0.2 cm -1 INTENSITY × cm -1 band : ν 1 LIF spectra of 14 NO 3 and 14 NO 2 How about the vibronic bands?

NO 2 N 2 O 5 → NO 3 + NO 2 High-resolution LIF spectra 14 NO cm -1 band and 14 NO 2 NO 2 R (2) R (0) R (4) P (2) 0.2 cm -1 Resolution : cm -1

N 2 O 5 → NO 3 + NO 2 NO 2 Small signal, large background → difficult to analyze NO 3 signal Resolution : cm -1 High-resolution LIF spectra 14 NO cm -1 band and 14 NO 2

Wavenumber / cm Wavenumber / cm -1 NO 2 N 2 O 5 → NO 3 + NO 2 R. E. Smalley et al., J. Chem. Phys., 63, 4977 (1975) cm -1 band : 2ν 4 M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012) Resolution : 0.2 cm -1 INTENSITY ×5 LIF spectra of 14 NO 3 and 14 NO 2

N 2 O 5 → NO 3 + NO 2 NO cm -1 Resolution : cm -1 High-resolution LIF spectra 14 NO cm -1 band and 14 NO 2

N 2 O 5 → NO 3 + NO cm -1 High-resolution LIF spectra 14 NO cm -1 band and 14 NO 2 Resolution : cm -1 Large signal, small background, compared with cm -1 band Large signal, small background, compared with cm -1 band

0 G 12 G 25 G 37 G 50 G 62 G J’ = 1.5 MJMJ J” = π - pump (H // E), ΔM J = 0 Zeeman Splitting at cm -1 line pair J” = cm -1

N 2 O 5 → NO 3 + NO cm -1 R (0.5) Q (1.5) High-resolution LIF spectra 14 NO cm -1 band and 14 NO 2 Resolution : cm -1 2 E’ 3/2 2 E’ 1/2 X 2 A 2 ’ ( ʋ ”=0, K” = 0, N” = 1) J’ = 1.5 J’ = 0.5 J” = 0.5 J” = cm -1 QR R Q QP

Summary  We have observed high-resolution fluorescence excitation spectra of 14 NO 3 B-X transition. (1) 0-0 band [15070 – cm -1 ] (2) cm -1 band [15872 – cm -1 ] * (3) cm -1 band [16048– cm -1 ] * (* Not full region.)  Rotational assignment is difficult except the transitions from the X 2 A 2 ’ (K” = 0, N” = 1) levels. ( cm -1 pairs)  Unambiguous assignment of these cm -1 pairs is completed from the observed Zeeman splittings.  How about 15 NO 3 ? MI14

Acknowledgement  Prof. Masaru Fukushima (Hiroshima City University) for his LIF spectrum of 15 NO 3.  Ms. Kanon Teramoto and Mr. Tsuyoshi Takashino (Undergraduate students, Kobe University) for their help.  Thank you for your attention!  Prof. Masaaki Baba (Kyoto University) for experimental setup at early stage.  How about 15 NO 3 ? MI14

Electronic states of NO 3 B 2 E’ A 2 E” X 2A2’X 2A2’ ~ cm -1 (~ 662 nm) ~ 7000 cm -1 (~ 1430 nm) E” E’ A2’A2’ A2”A2” LUMO SOMO NO 3 …Planer triangle ⇒ D 3h Radical ⇒ Doublet (Gaussian03, RHF/6-31g)

Vibrational Assignment Vibrational Assignment Wavenumber / cm cm -1 band M. Fukushima et al., 67th Int. Symp. Mol. Spectrosc., TI06 (2012)振動 モー ド 既約 表現 遷移波数 (cm -1 ) X [1] [2] A [3] B ν1ν1 a1’a1’ ν2ν2 a2”a2” ν3ν3 e’1480 (?)1435 ν4ν4 e’380530~ 385 2ν42ν4 ν1ν cm -1 band [1] T. Ishiwata et al., J. Phys. Chem., 87, 1349 (1983) [2] R. R. Friedl et al., J. Phys. Chem., 91, 2721 (1987) [3] T. J. Codd et al., 68th Int. Symp. Mol. Spectrosc., WJ05 (2013) Normal Mode of NO ν 2 A 2 ” ν 1 A 1 ’ ν 3a E’ ν 3b ν 4a E’ ν 4b E’ ν = E’ a 1 ’, a 2 ’, e’ B state Vibrational level Vibronic level band

Complicated structure of the 662 nm band Vib. modeFrequency Anharmonic constant ν 1 (a 1 ’) ν 2 (a 2 ”) ν 3 (e’) ν 4 (e’) – – [Codd et al., 67th OSU meeting, TI01 (2012)] The A state vibrational frequencies in cm -1 X 2A2’X 2A2’ A 2 E” B 2 E’ { – cm -1 region: 10 ~ 15 E’-type levels Complicated structure of the 662 nm band: (mainly) vibronic interaction with dark A state?? 7060 cm -1 E” × A 2 ” = E’ cm -1

B 2 E’ : Hund’s coupling case(a) J R P S L Λ Σ z(c) x(a)=y(b) KN J R L S z(c) x(a)=y(b) X 2 A 2 ’(v=0) : Hund’s coupling case(b) good quantum number : Λ, S, Σ, J, P, M J, K good quantum number : N, K, S, J, M J Hund’s Couplig Case Hund’s Couplig Case