Tunneling Spectroscopy and Vortex Imaging in Boron-doped Diamond

Slides:



Advertisements
Similar presentations
Prospect of High Gradient Cavity H. Hayano, Tohoku Forum for Creativity 2013.
Advertisements

Probing Superconductors using Point Contact Andreev Reflection Pratap Raychaudhuri Tata Institute of Fundamental Research Mumbai Collaborators: Gap anisotropy.
Superconductivity in Diamond
STM/S Imaging Studies in the Vortex State Anjan K. Gupta Physics Department, IIT, Kanpur (Tutorial, IVW10 at TIFR)
1 High Pressure Study on MgB 2 B.Lorenz, et al. Phys. Rev.B 64,012507(2001) Shimizu-group Naohiro Oki.
Franco-Israel Conference on Nanocharacterization Surface Electronic Characterization with SPM Sidney Cohen This presentation will probably involve audience.
Kitaoka lab Itohara Keita
High-T c Superconductor Surface State 15/20/2015 Group member: 陈玉琴、郭亚光、贾晓萌、刘俊义、刘晓雪 彭星星、王建力、王鹏捷 ★ 、喻佳兵 ★ :Group Leader & Speaker.
Highlights on Some Experimental Progress of FeSe Xingjiang ZHOU 2014/10/08.
Search for high temperature superconductivity of Sr 2 VO 4 under high pressure Shimizu Lab Kaide Naohiro.
Spin dependent tunneling in junctions involving normal and superconducting CDW metals A.M. Gabovich and A.I. Voitenko (Institute of Physics, Kyiv, Ukraine)
1 Tuning Molecule-mediated Spin Coupling in Bottom-up Fabricated Vanadium-TCNE Nanostructures Daniel Wegner Institute of Physics and Center for Nanotechnology.
Magneto-optical study of InP/InGaAs/InP quantum well B. Karmakar, A.P. Shah, M.R. Gokhale and B.M. Arora Tata Institute of Fundamental Research Mumbai,
ECRYS 2011 Confinement-Induced Vortex Phases in Superconductors Institut des Nanosciences de Paris INSP, CNRS, Université Pierre et Marie Curie Paris 6,
Semiconductors n D*n If T>0
Vortices in Classical Systems. Vortices in Superconductors  = B  da = n hc e*  e i  wavefunction Superconducting flux quantum e*=2e   = 20.7.
VORTEX MATTER IN SUPERCONDUCTORS WITH FERROMAGNETIC DOT ARRAYS Margriet J. Van Bael Martin Lange, Victor V. Moshchalkov Laboratorium voor Vaste-Stoffysica.
Vortex Dynamics in Type II Superconductors Yuri V. Artemov Yuri V. Artemov Ph.D. Student in Physics Brian B. Schwartz Mentor: Brian B. Schwartz Professor.
23 April 2001Doug Martin1 Diamond: A Story of Superlatives.
Magnetic properties of SmFeAsO 1-x F x superconductors for 0.15 ≤ x ≤ 0.2 G. Prando 1,2, P. Carretta 1, A. Lascialfari 1, A. Rigamonti 1, S. Sanna 1, L.
1 Basics of Microwave Measurements Steven Anlage
2011/12/14 2nd term M1 colloquium Creation of huge metal-insulator domain and its electrical conduction property in VO 2 thin film on TiO 2 (001) substrate.
Spintronics and Graphene  Spin Valves and Giant Magnetoresistance  Graphene spin valves  Coherent spin valves with graphene.
Investigation of fluid- fluid phase transition of hydrogen under high pressure and high temperature 2014/11/26 Shimizu laboratory SHO Kawaguchi.
Methods in Surface Physics Experimentation in Ultra-High Vacuum Environments Hasan Khan (University of Rochester), Dr. Meng-Fan Luo (National Central University)
M1 Colloquium Presentation Arora Varun 29A13106 (Shimizu Lab) Superconductivity in MNX type compounds ( TiNCl ) Superconducting Nitride Halides (MNX),
Gavin W Morley Department of Physics University of Warwick Diamond Science & Technology Centre for Doctoral Training, MSc course Module 2 – Properties.
Organic conductors and superconductors go nano Eun Sang Choi, Florida State University, DMR [1] D. de Caro et al., Four Molecular Superconductors.
Pressure effect on electrical conductivity of Mott insulator “Ba 2 IrO 4 ” Shimizu lab. ORII Daisuke 1.
Complex Epitaxial Oxides: Synthesis and Scanning Probe Microscopy Goutam Sheet, 1 Udai Raj Singh, 2 Anjan K. Gupta, 2 Ho Won Jang, 3 Chang-Beom Eom 3 and.
Structure of the task 12.2 Claire Antoine Eucard2 WP12 DESY
Measurement of nano-scale physical characteristics in VO 2 nano-wires by using Scanning Probe Microscope (SPM) Tanaka lab. Kotaro Sakai a VO 2 nano-wire.
Superconductivity in electron-doped C 60 crystals 電子ドープされたフラーレン結晶 における超伝導 Kusakabe Lab Kei Kawashima.
Pressure effect on the superconductivity of HgBa 2 Ca 2 Cu 3 O 8+  Shimizu Lab. M1 KAMADA Yukihiro.
Search for superconductivity in CrB 2 under pressure 29A13025 Shimizu Lab Kaide Naohiro.
Today –Homework #4 Due –Scanning Probe Microscopy, Optical Spectroscopy –11 am NanoLab Tour Tomorrow –Fill out project outline –Quiz #3 in regular classroom.
High Pressure study of Bromine Shimizu Lab M2 Hayashi Yuma.
Elshan Akhadov Spin Electronics QuarkNet, June 28, 2002 Peng Xiong Department of Physics and MARTECH Florida State University.
Picosecond Heat Transport through Molecular Layers Zhaohui Wang, Nak-Hyun Seong, Alexei S. Lagoutchev, Dana D. Dlott School of Chemical Sciences University.
Superconducting properties in filled-skutterudite PrOs4Sb12
Nanoscale imaging and control of resistance switching in VO 2 at room temperature Jeehoon Kim, Changhyun Ko, Alex Frenzel, Shriram Ramanathan, and Jennifer.
Scanning capacitance microscopy
1 Disorder and Zeeman Field-driven superconductor-insulator transition Nandini Trivedi The Ohio State University “Exotic Insulating States of Matter”,
Control of Carbon Nanotube Nucleation Rate with a Hydrogen Beam Plasma Paolo Santos 1, Dorothée Alsentzer 3, Thomas B. Clegg 2,3, Sergio Lemaitre 2,3,
Topic: Investigation of nanocrystalline diamond films for artificial photosynthesis Patras, Greece   Violeta Popova, Christo Petkov 1.
Fe As A = Ca, Sr, Ba Superconductivity in system AFe 2 (As 1-x P x ) 2 Dulguun Tsendsuren Kitaoka Lab. Division of Frontier Materials Sc. Department of.
Superconducting Cobaltites Nick Vence. Definition A material which looses its electrical resistivity below a certain temperature (Tc)is said to be superconducting.
Preliminary doping dependence studies indicate that the ISHE signal does pass through a resonance as a function of doping. The curves below are plotted.
Why Make Holes in Superconductors? Saturday Morning Physics December 6, 2003 Dr. Sa-Lin Cheng Bernstein.
A. Orozco, E. Kwan, A. Dhirani Department of Chemistry, University of Toronto SCANNING TUNNELING MICROSCOPY: A NEW CHM 326 LAB.
Chapter 7 in the textbook Introduction and Survey Current density:
Anne-Marie VALENTE-FELICIANO On behalf of the HEPTHF Collaboration.
MgB 2 Thin Films for SRF Cavities Xiaoxing Xi Department of Physics Temple University, Philadelphia, PA July 18, th Workshop on Thin Film SRF JLab,
Superconductivity Basics
Activity and Stability of Ceria Supported Bimetallic Ni-Au in the Reforming of Ethanol By Sakun Duwal.
Manoj B. Jadhav Supervisor Prof. Raghava Varma I.I.T. Bombay PANDA Collaboration Meeting, PARIS – September 11, 2012.
1 RF Superconducting Materials Workshop at Fermilab A Novel Method to Measure the Absolute Value of the Magnetic Penetration Depth in Superconductors Vladimir.
This work is funded by US Department of Energy and CNAM
Update on MgB2 Front from Temple university
Superconducting NbN Thin Films Synthesized by Atomic Layer Deposition
Magnetic Thin Films and Devices: NSF CAREER AWARD
Ching-Rong “Ada” Chung Mentor: Dr. Jing Zhou Department of Chemistry
Evaluation of Recombination Velocity at Grain Boundaries in Poly-Si Solar Cells with Laser Beam 指導老師:林克默 博士 學 生:楊顯奕 報告日期:
SUPERCONDUCTING THIN FILMS FOR SRF CAVITIES
Electrical Properties of Materials
Effect of Surface Treatments on the Superconducting Properties of Niobium Presented by A.S.Dhavale Sept. 23, 2010.
High Temperature Superconductivity
2. SEM images of different SiNW structures 3.Results and discussion
by Mark T. Edmonds, James L
Ginzburg-Landau theory
Presentation transcript:

Tunneling Spectroscopy and Vortex Imaging in Boron-doped Diamond Kitaoka Lab. Toshiyuki Tsuchida Ref.)B.Sacepe et al. cond-mat/0510541

Contents Introduction Experiments Summary Boron-doped Diamond STM Measurement of Superconductor by STM Experiments Summary

Superconductivity in B-doped diamond onset 4K offset 2.3K Ekimov, et al., Nature 428, 542 (2004) 台詞: 2004年、Ekimovらによってonset4.2Koffset 2.3Kの超伝導を有することを発見されたダイヤモンドは、 約8~9GPaの高圧、2,800度という高温中で合成されたダイヤモンドです。 左の写真は表面の図ですが、ダイヤモンドはB4Cとグラファイトの境界に生成されます。この境界のダイヤモンドで超伝導が生まれます。さらに、右の図から150~300Kまでは抵抗が変わらないこと、150K以下から抵抗が半導体的な振る舞いを示すこと、また圧力を加えることによって転移温度が下がることなど通常の金属にとって異常な振る舞いが顔を出しています。 Superconductivity takes place in the diamond at the interface between graphite and B4C Synthesis under High Pressure (8~9GPa) and High Temperature(2,800K) [HPHT Method]

SC in B-doped diamond film MPCVD method Polycrystalline onset 7K これがCVD法で作った厚さ3.5μmの薄膜状のダイヤモンドです。 これは表面の拡大図ですが、この図のようにSiの上にダイヤモンドが積層しているのがわかります。これをさらに拡大した図を見てみると、三角形の形の結晶が多く見られます。この結晶はダイヤモンドの(111)面です。 この試料には約0.53%のホウ素がドーピングされており、図のようにonset7Kから電気抵抗が落ち始め 4Kでoffsetとなっています。マイスナー効果は約3.5Kから発現しております。 GAS: H2 + CH4 + B(CH)3 Advantages of this method It is easy to control thickness of diamond film growth facet Boron density offset 4K Y.Takano Appl .Phys.Lett., 85,4 2004

Boron-doped diamond 3 Superconductivity B-density vs resistivity(room temperature) B-density vs Tc Superconductivity これをさきほどの図でみてやるとちょうど半導体的性質から金属的な性質に転移しようとする 濃度の近傍で超伝導が起こっていることがわかります。このように通常超伝導が現れにくいと思われている状況で起こる超伝導には新しい機構による超伝導状態が期待され、今後の研究の発展が望まれます。 J.-P. Lagrange et al. D.R.M 7 (1998) 1390–1393 Umezawa et al. condmat-05503303 (2005) Superconductivity takes place in vicinity of metal-insulator boundary Tc of (111) film > Tc of (100) film

STM (Scanning Tunneling Microscope) 1 ・Observations of microscopic geometry on the surface Atomic-scale resolution ・Measurements of local property

STM (Scanning Tunneling Microscope) 2 V=0 DOS probe (normal metal) N EF I sample (normal metal) V=V1 DOS N V EF eV1

STM (Scanning Tunneling Microscope) 3 probe (normal metal) EF N N V sample (normal metal) ↓ (superconductor) I 2Δ EF S N V Δ/e

S.C.measurement by STM D(E) Tunneling conductance EF E ΔI/ΔV V 2Δ:energy gap

Sample information 1 ・synthesized by MPCVD (Microwave Plasma-assisted chemical vapor deposition ) ・boron density ~ nB=1.9×1021cm-3 (≒ 1.1%) ・ thickness ~150 nm Umezawa et al. condmat-05503303 (2005)

Sample information 2 Tconset=2.5K ΔTc is very narrow Hc2(T=0K)~1.5T →ξ~150Å (ξ: coherence length) Tconset=2.5K ΔTc is very narrow

Surface topography by STM 600 nm ・The parallel strips reflect the vicinal surface structure of the substrate . ・the average of steps is ~1.8 nm 1.8nm step 600nm (1.5×1.5μm2) substrate

Tunneling conductance at Superconducting state 2Δ Δ=285μeV (In the BCS theory,Δ/kBTc~1.76)

Temperature dependence of the BCS gap BCS fitting curve indicates Tc=1.85K susceptibility and transport  Tc ~ 1.9K Tc=1.85K

Superconducting state observed by STM Δ/kBTc~1.74 Tc=1.85K B-doped diamond is conventional BCS superconductor

Vortex Type-I diamagnetic Type-II Hc2 Applied magnetic field Hc1 Hc ξ S.C. state Vortex state Normal state Superconducting state Normal state ξ Δ

Vortex images 1.5μm White・・・・・S.C. state Black・・・・・normal state In the higher field, more vortice exist. H. F. Hess et al ,Phys.Rev.Lett. 62,214(1989) NbSe2 H=1200Oe H=1900Oe d~140nm d~110nm Comparing with the ideal triangular vortex lattice, the vortex lattice of B-doped diamond is inhomogeneous. →because of random substitution of Boron

Density of states around the vortex The diameter of vortex is estimated about 15nm. (c.f. ξGL=15nm) Even within the BCS gap, DOS around EF exists. H=1800Oe

Summary First observation of SC state by STM B-doped diamond is the conventional BCS superconductor Under magnetic field,the vortices are arranged in disordered triangular lattice