Recent improvements in the GSI fission model

Slides:



Advertisements
Similar presentations
M3.1 JYFL fission model Department of Physics, University of Jyväskylä, FIN-40351, Finland V.G. Khlopin Radium Institute, , St. Petersburg, Russia.
Advertisements

The fission of a heavy fissile nucleus ( A, Z ) is the splitting of this nucleus into 2 fragments, called primary fragments A’ 1 and A’ 2. They are excited.
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
BEAM INTENSITIES WITH EURISOL M. Valentina Ricciardi GSI, Darmstadt, Germany.
Kazimierz What is the best way to synthesize the element Z=120 ? K. Siwek-Wilczyńska, J. Wilczyński, T. Cap.
Estimation of production rates and secondary beam intensities Martin Veselský, Janka Strišovská, Jozef Klimo Institute of Physics, Slovak Academy of Sciences,
EURISOL workshop, ECT* Trento, Jan Two-component (neutron/proton) statistical description of low-energy heavy-ion reactions E. Běták & M.
INTRODUCTION SPALLATION REACTIONS F/B ASYMMETRY FOR Au+p RANKING OF SPALLATION MODELS SUMMARY Title 24/09/2014 Sushil K. Sharma Proton induced spallation.
C. Böckstiegel, S. Steinhäuser, H.-G. Clerc, A. Grewe, A. Heinz, M. de Jong, J. Müller, B. Voss Institut für Kernphysik, TU Darmstadt A. R. Junghans, A.
A MODEL FOR PROJECTILE FRAGMENTATION Collaborators: S. Mallik, VECC, India S. Das Gupta, McGill University, Canada 1 Gargi Chaudhuri.
CEA Bruyères-le-ChâtelESNT 2007 Fission fragment properties at scission: An analysis with the Gogny force J.F. Berger J.P. Delaroche N. Dubray CEA Bruyères-le-Châtel.
Role of mass asymmetry in fusion of super-heavy nuclei
The study of fission dynamics in fusion-fission reactions within a stochastic approach Theoretical model for description of fission process Results of.
Microscopic-macroscopic approach to the nuclear fission process
Aim  to compare our model predictions with the measured (Dubna and GSI) evaporation cross sections for the 48 Ca Pb reactions. Calculations.
Fragmentation of very neutron-rich projectiles around 132 Sn GSI experiment S294 Universidad de Santiago de Compostela, Spain Centre d’Etudes Nucleaires.
Beatriz Jurado, Karl-Heinz Schmidt CENBG, Bordeaux, France Supported by EFNUDAT, ERINDA and NEA The GEneral Fission code (GEF) Motivation: Accurate and.
Isotopically resolved residues produced in the fragmentation of 136 Xe and 124 Xe projectiles Daniela Henzlova GSI-Darmstadt, Germany on leave from NPI.
Fission and Dissipation Studies via Peripheral Heavy Ion Collisions at Relativistic Energy Ch. SCHMITT, IPNLyon  Innovative Reaction Mechanism  Relevant.
Transmutation of Spent Nuclear Fuel utilizing Spallation Reactions John Freiderich NCSS 07/27/2006.
Héloïse Goutte CERN Summer student program 2009 Introduction to Nuclear physics; The nucleus a complex system Héloïse Goutte CEA, DAM, DIF
Kazimierz 2011 T. Cap, M. Kowal, K. Siwek-Wilczyńska, A. Sobiczewski, J. Wilczyński Predictions of the FBD model for the synthesis cross sections of Z.
Aleksandra Kelić for the CHARMS collaboration§ GSI Darmstadt, Germany
10-1 Fission General Overview of Fission The Probability of Fission §The Liquid Drop Model §Shell Corrections §Spontaneous Fission §Spontaneously Fissioning.
激发能相关的能级密度参数和重核衰变性质 叶 巍 (东南大学物理系 南京 ). 内容 ◆ 问题背景 ◆ 理论模型 ◆ 计算结果和结论.
Fission Collective Dynamics in a Microscopic Framework Kazimierz Sept 2005 H. Goutte, J.F. Berger, D. Gogny CEA Bruyères-le-Châtel Fission dynamics with.
Complex nuclear-structure phenomena revealed from the nuclide production in fragmentation reactions M. V. Ricciardi 1, A.V. Ignatyuk 2, A. Kelić 1, P.
Results of the de-excitation code ABLA07 GSI Darmstadt, Germany Aleksandra Kelić M. Valentina Ricciardi Karl-Heinz Schmidt.
High-resolution experiments on projectile fragments – A new approach to the properties of nuclear matter A. Kelić 1, J. Benlliure 2, T. Enqvist 1, V. Henzl.
The role of fission in the r-process nucleosynthesis Needed input Aleksandra Kelić and Karl-Heinz Schmidt GSI-Darmstadt, Germany
High-resolution experiments on nuclear fragmentation at the FRS at GSI M. Valentina Ricciardi GSI Darmstadt, Germany.
Projectile Fragmentation at the Fragment Separator
Andreas Heinz Wright Nuclear Structure Laboratory, Yale University for the CHARMS Collaboration Symposium on Nuclear Structure and Reactions in the Era.
D. Henzlova a, M. V. Ricciardi a, J. Benlliure b, A. S. Botvina a, T. Enqvist a, A. Keli ć a, P. Napolitani a, J. Pereira b, K.-H. Schmidt a a GSI-Darmstadt,
Role of the fission in the r-process nucleosynthesis - Needed input - Aleksandra Kelić and Karl-Heinz Schmidt GSI-Darmstadt, Germany What is the needed.
Study on Sub-barrier Fusion Reactions and Synthesis of Superheavy Elements Based on Transport Theory Zhao-Qing Feng Institute of Modern Physics, CAS.
Microscopic-macroscopic approach to the nuclear fission process Aleksandra Kelić and Karl-Heinz Schmidt GSI-Darmstadt, Germany
Beam intensities with EURISOL Aleksandra Kelić, GSI-Darmstadt on behalf of the EURISOL DS Task 11 Participants and contributors: ISOLDE-CERN, CEA/Saclay,
Sub-task 4: Spallation and fragmentation reactions M. Valentina Ricciardi (GSI) in place of José Benlliure (USC) Sub-task leader: Universidad de Santiago.
Aleksandra Keli ć for CHARMS Basic Research at GSI for the Transmutation of Nuclear Waste * * Work performed in the frame of the.
The de-excitation code ABLA07 Aleksandra Keli ć, Maria Valentina Ricciardi and Karl-Heinz Schmidt GSI Darmstadt, Germany.
A. Kelić, S. Lukić, M. V. Ricciardi, K.-H. Schmidt GSI, Darmstadt, Germany and CHARMS Measurements and simulations of projectile and fission fragments.
Momentum distributions of projectile residues: a new tool to investigate fundamental properties of nuclear matter M.V. Ricciardi, L. Audouin, J. Benlliure,
EVIDENCE FOR TRANSIENT EFFECTS IN FISSION AND IMPORTANCE FOR NUCLIDE PRODUCTION B. Jurado 1,2, K.-H. Schmidt 1, A. Kelić 1, C. Schmitt 1, J. Benlliure.
Aleksandra Kelić Gesellschaft für Schwerionenforschung (GSI) Darmstadt, Germany Experimental approaches to spallation reactions.
Time dependent GCM+GOA method applied to the fission process ESNT janvier / 316 H. Goutte, J.-F. Berger, D. Gogny CEA/DAM Ile de France.
Task 11.4: Spallation and fragmentation reactions David Pérez Loureiro Universidad de Santiago de Compostela, Spain Eurisol DS, Task 11 meeting,Helsinki.
Dynamical Model of Surrogate Reaction Y. Aritomo, S. Chiba, and K. Nishio Japan Atomic Energy Agency, Tokai, Japan 1. Introduction Surrogate reactions.
Production mechanism of neutron-rich nuclei in 238 U+ 238 U at near-barrier energy Kai Zhao (China Institute of Atomic Energy) Collaborators: Zhuxia Li,
Fission studies at HIE-ISOLDE with the TSR B. Jurado 1, P. Marini 1, F. Farget 2, M. Grieser 3, R. Reifarth 4, M. Aiche 1, A. Andreyev 5, L. Audouin 6,
Lecture 4 1.The role of orientation angles of the colliding nuclei relative to the beam energy in fusion-fission and quasifission reactions. 2.The effect.
Y. K. Gupta Nuclear Physics Division, BARC, Mumbai Understanding of Diverse Nuclear Phenomena using charged particle emission as a probe.
Dynamical effects in fission reactions investigated at high excitation energy José Benlliure Universidad of Santiago de Compostela Spain.
M. Valentina Ricciardi GSI, Darmstadt ORIGIN OF THE EVEN-ODD EFFECT IN THE YIELDS FROM HIGH-ENERGY REACTIONS Its role in the study of the properties of.
Microscopic studies of the fission process
Department of Physics, University of Jyväskylä, Finland
Nuclear excitations in nucleon removal processes
Overview of the fragmentation mechanism
BEAM INTENSITIES WITH EURISOL
Aleksandra Kelić GSI – Darmstadt
Karl-Heinz Schmidt, Aleksandra Kelić, Maria Valentina Ricciardi
Global view on fission channels
J. Pereira1, P. Armbruster2, J. Benlliure1, M. Bernas3 ,A. Boudard4, E
Intermediate-mass-fragment Production in Spallation Reactions
M. Valentina Ricciardi GSI, Darmstadt
The role of fission in the r-process nucleosynthesis
Cross-Section Measurement of Very Light Fission Fragments Produced in Spallation Reactions of 238U at 1 A GeV M. V. Ricciardi1, K. -H. Schmidt1, F. Rejmund1,
NEW SIGNATURES ON DISSIPATION FROM THE STUDY OF
Microscopic-macroscopic approach to the nuclear fission process
Production Cross-Sections of Radionuclides in Proton- and Heavy Ion-Induced Reactions Strahinja Lukić.
Presentation transcript:

Recent improvements in the GSI fission model Task 11, subtask 3 Aleksandra Kelić, Maria Valentina Ricciardi, Karl-Heinz Schmidt GSI – Darmstadt http://www.gsi.de/charms/

Motivation RIB production (fragmentation method, ISOL method), Spallation sources and ADS Data measured at FRS* * Ricciardi et al, PRC 73 (2006) 014607; Bernas et al., NPA 765 (2006) 197; Armbruster et al., PRL 93 (2004) 212701; Taïeb et al., NPA 724 (2003) 413; Bernas et al., NPA 725 (2003) 213 www.gsi.de/charms/data.htm Challenge - need for consistent global description of fission and evaporation

What do we need? Fission competition in de-excitation of excited nuclei E* • Fission barriers Fragment distributions • Level densities • Nuclear viscosity Particle-emission widths

Mass and charge division in fission

Experimental information - High energy In cases when shell effects can be disregarded, the fission-fragment mass distribution is Gaussian  Data measured at GSI: T. Enqvist et al, NPA 2001 (see www.gsi.de/charms/)

Experimental information - Low energy Particle-induced fission of long-lived targets and spontaneous fission Available information: - A(E*) in most cases - A and Z distributions of light fission group only in the thermal-neutron induced fission on the stable targets EM fission of secondary beams at GSI - Z distributions at "one" energy

Experimental information - Low energy More than 70 secondary beams studied: from Z=85 to Z=92 Schmidt et al., NPA 665 (2000) 221

Macroscopic-microscopic approach - Transition from single-humped to double-humped explained by macroscopic and microscopic properties of the potential-energy landscape near outer saddle. Macroscopic part: property of CN Microscopic part: properties of fragments* N82 N90 * Maruhn and Greiner, Z. Phys. 251 (1972) 431, PRL 32 (1974) 548; Pashkevich, NPA 477 (1988) 1;

Basic assumptions Macroscopic part: Macroscopic potential is property of fissioning system ( ≈ f(ZCN2/ACN)) Potential near saddle from exp. mass distributions at high E* (Rusanov): cA is the curvature of the potential at the elongation where the decision on the A distribution is made. cA = f(Z2/A)  Rusanov* * Rusanov et al, Phys. At. Nucl. 60 (1997) 683

Basic assumptions Microscopic part: Microscopic corrections are properties of fragments (= f(Nf,Zf)) Assumptions based on shell-model calculations (Maruhn & Greiner, Pashkevich) Shells near outer saddle "resemble" shells of final fragments (but weaker) Properties of shells from exp. nuclide distributions at low E* A  140 A  132 Calculations done by Pashkevich

Basic assumptions Mass of nascent fragments N/Z of nascent fragments Dynamics: Approximations based on Langevin calculations (P. Nadtochy): τ (mass asymmetry) >> τ (saddle scission): decision near outer saddle τ (N/Z) << τ (saddle scission) : decision near scission Population of available states with statistical weight (near saddle or scission) Mass of nascent fragments N/Z of nascent fragments

Macroscopic-microscopic approach Fit parameters: Curvatures, strengths and positions of two microscopic contributions as free parameters These 6 parameters are deduced from the experimental fragment distributions and kept fixed for all systems and energies. For each fission fragment we get: Mass Nuclear charge Kinetic energy Excitation energy Number of emitted particles

ABLA - evaporation/fission model Evaporation stage - Extended Weisskopf approach with extension to IMFs - Particle decay widths - inverse cross sections based on nuclear potential - thermal expansion of source - angular momentum in particle emission - g-emission at energies close to the particle threshold (A. Ignatyuk) Fission - Fission decay width - analytical time-dependent approach (B. Jurado) - double-humped structure in fission barriers - symmetry classes in low-energy fission - Particle emission on different stages of the fission process

Comparison with data

ABLA Test of the fission part  Fission probability 235Np  Data (A. Gavron et al., PRC13 (1976) 2374)  ABLA Test of the evaporation part  56Fe (1 A GeV) + 1H  Data (C. Villagrasa et al, P. Napolitani et al)  INCL4+ABLA

Fission of secondary beams after the EM excitation Black - experiment (Schmidt et al, NPA 665 (2000)) Red - calculations 89Ac 90Th 91Pa 92U 131 135 134 133 132 136 137 138 139 140 141 142 With the same parameter set for all nuclei!

Neutron-induced fission of 238U for En = 1.2 to 5.8 MeV Data - F. Vives et al, Nucl. Phys. A662 (2000) 63; Lines - ABLA calculations

More complex scenario 238U+p at 1 A GeV Model calculations (model developed at GSI): Experimental data: