Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.

Slides:



Advertisements
Similar presentations
ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Advertisements

The Galactic diffuse emission Sabrina Casanova, MPIK Heidelberg XXth RENCONTRES DE BLOIS 18th - 23rd May 2008, Blois.
Modeling the SED and variability of 3C66A in 2003/2004 Presented By Manasvita Joshi Ohio University, Athens, OH ISCRA, Erice, Italy 2006.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
TANAMI Blazars as Possible Sources of the IceCube PeV Neutrinos
Upper Limit on the Cosmological  - Ray Background Yoshiyuki Inoue (Stanford) Kunihito Ioka (KEK) 1.
Moriond 04/02/09Benoit Lott New insight into Gamma-ray Blazars from the Fermi-LAT Benoît Lott CEN Bordeaux-Gradignan on behalf of the Fermi-LAT collaboration.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
July 4, 2006 P. Padovani, Unidentified  -ray Sources 1 The Blazar Sequence: Validity and Predictions Paolo Padovani (ESO) Blazar properties The Blazar.
Deciphering the gamma-ray background: stafrorming galaxies, AGN, and the search for Dark Matter in the GeV Band. Vasiliki Pavlidou Einstein Fellow Shin’ichiro.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
E. MignecoErice ISCRA, July Introduction to High energy neutrino astronomy Erice ISCRA School 2004 Emilio Migneco.
1 Tuning in to Nature’s Tevatrons Stella Bradbury, University of Leeds T e V  -ray Astronomy the atmospheric Cherenkov technique the Whipple 10m telescope.
Alexander Kappes UW-Madison 4 th TeVPA Workshop, Beijing (China) Sep. 24 – 28, 2008 The Hunt for the Sources of the Galactic Cosmic Rays — A multi-messenger.
10 18 eV Neutrinos associated with UHECR (>10 19 eV) sources Zhuo Li ( 黎卓 ) Peking University, Beijing Collaborators: Eli Waxman & Liming Song Li & Waxman,
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Gamma-ray Astronomy of XXI Century 100 MeV – 10 TeV.
High energy emission from jets – what can we learn? Amir Levinson, Tel Aviv University Levinson 2006 (IJMPA, review)
Studying emission mechanisms of AGN Dr. Karsten Berger Fermi School, June ©NASA.
Blazars and Neutrinos C. Dermer (Naval Research Laboratory) Collaborators: A. M. Atoyan (Universite de Montreal) M. Böttcher (Rice University) R. Schlickeiser.
Leptonic and Hadronic Modeling of Gamma-Ray Blazars Markus Böttcher and Anita Reimer North-West University Universit ӓ t Innsbruck Potchefstroom, Innsbruck.
Leptonic and Hadronic Models for the Spectral Energy Distributions and High- Energy Polarization of Blazars Markus Böttcher North-West University Potchefstroom.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
The Origin and Acceleration of Cosmic Rays in Clusters of Galaxies HWANG, Chorng-Yuan 黃崇源 Graduate Institute of Astronomy NCU Taiwan.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
What do we learn from the recent cosmic-ray positron measurements? arXiv: [MNRAS 405, 1458] arXiv: K. Blum*, B. Katz*, E. Waxman Weizmann.
Introduction to the High Energy Astrophysics Introductory lecture.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Modeling the Emission Processes in Blazars Markus Böttcher Ohio University Athens, OH.
Gamma-ray Bursts and Particle Acceleration Katsuaki Asano (Tokyo Institute of Technology) S.Inoue ( NAOJ ), P.Meszaros ( PSU )
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:
PHY418 Particle Astrophysics
Diffuse Emission and Unidentified Sources
Kirsten Münich University of Dortmund, Germany Analysis strategies and recent results from AMANDA-II.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
The Gamma-Neutrino Connection in Transparent Sources – the Observational Side Alexander Kappes University Wisconsin-Madison Workshop on Non-Thermal Hadronic.
Hiroyasu Tajima Stanford Linear Accelerator Center Kavli Institute for Particle Astrophysics and Cosmology October 26, 2006 GLAST lunch Particle Acceleration.
Prospects of Identifying the Sources of the Galactic Cosmic Rays with IceCube Alexander Kappes Francis Halzen Aongus O’Murchadha University Wisconsin-Madison.
IceCube’s neutrinos: What we have learned E. Waxman Weizmann Institute.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
AGASA results Anisotropy of EHE CR arrival direction distribution M. Teshima ICRR, U of Tokyo.
NuSky 20-June-2011Tom Gaisser1 Cosmic-ray spectrum and composition --Implications for neutrinos and vice versa.
Counterparts to Single Neutrinos
A Search for Blazars among the Unidentified EGRET Gamma-Ray Sources.
Imaging the Neutrino Universe with AMANDA and IceCube
Gamma Rays from the Radio Galaxy M87
Recent Results of Point Source Searches with the IceCube Neutrino Telescope Lake Louise Winter Institute 2009 Erik Strahler University of Wisconsin-Madison.
Observation of Pulsars and Plerions with MAGIC
Theoretical status of high energy cosmic rays and neutrinos
Brennan Hughey for the IceCube Collaboration
science with 40 IceCube strings
Active Galactic Nuclei (AGN)
Diffuse neutrino flux J. Brunner CPPM ESA/NASA/AVO/Paolo Padovani.
Alexander Kappes Francis Halzen Aongus O’Murchadha
Are Diffuse High Energy Neutrinos from Starburst Galaxies Observable?
Particle Acceleration in the Universe
Cosmic rays, γ and ν in star-forming galaxies
Brennan Hughey for the IceCube Collaboration
Predictions of Ultra - High Energy Neutrino fluxes
Massive star clusters as Sources of Galactic Cosmic Rays (arXiv:1804
Time-Dependent Searches for Neutrino Point Sources with IceCube
Presentation transcript:

Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10

Outline Background: neutrino detection; sources AGN phenomena AGN neutrino models constraint by gamma-ray Conclusion

HE neutrino flux implied by UHE cosmic ray Neutrinos from  production If all p energy converted to  Waxman-Bahcall Bound from detected >10 19 eV CR flux : Waxman & Bahcall 1999 CR spectrum

IceCube: KM scale KM 3 size to detect GZK neutrino, as well as SNR, AGN & GRB DUMAND, AMANDA, operation 2000 IceCube, completed s evts/yr for WB bound

High energy neutrino discovery 3yr IC86, 37 evts, 5.7sigma (8.4 atm muon, 6.6 atm neutrino) 30TeV-2PeV E -2 PL, 1:1:1, isotropic 2010/5-2012/5 data: 1.EeV GZK neutrino search found two at 1 PeV 2.Follow-up search: 28 evts 1.Lower E 2.Interaction vertices within detector volume Veto entering tracks South North HE tracks?

Diffuse neutrinos Harder than atmospheric events Uncertainty: charm meson decay Consistent with isotropic Disfavor charm component – which expect south 50% smaller than north per flavor

Diffuse neutrinos Spectrum: best fit E -2.3 Or E -2 spectrum + PeV cutoff unbroken unlikely Sky map, no significant spot Also no clustering in time, no correlation with GRB

PeV neutrino source? Galactic origin –CR propagation: diffuse –point sources (isotropic?!) Pulsar, SNR, PWN, micro-quasar, … Extragalactic origin –p-p: CR propagation Star forming/starburst galaxies Galaxy clusters … –p-  in-source Gamma ray bursts Active galactic nuclei: jets & core …

upper limit ~200 GRBs Null results… Stacking search

Gamma – neutrino connection Connection: I.neutrino -- secondary electron II.neutrino -- secondary gamma-ray III.neutrino -- primary proton/electron

Fermi-LAT probes neutrino origin Whether various candidates can produce the IceCube neutrino flux?

Galactic diffuse emission: unlikely Pi0 gamma-neutrino Extrapolation: GeV to PeV –Galactic CR spectral index –p-p neutrino spectrum follows CR IC MW diff. emis. Fermi-LAT [Wang, LZ, Zhao 2014]

AGN property Compact and strong nuclear emission –luminosity 10^43-48 erg/s; size <0.1pc (1pc=3.08E18cm) Broad band radiation spectra –primarily non-thermal, F ∝ -α (polarized) –thermal in some bands (but not from stars) Strong emission lines –Widths suggest velocity up to 1E4 km/s Variability –in continuum and emission line flux, as well as line profile and polarization Stronger X- and Gamma-ray (than normal galaxies) FSRQ BL Lac

Unified model BH –1E6~1E10 M sun Disk Torus Jet BLR NLR … Viewing angle effect

Blazar spectrum: two bumps Low energy bump –Electron synchrotron Gamma origin –Leptonic model electron IC –Hadronic model Pi decay P-synchrtron BL Lac 3C 66A

AGN CR  neutrino Jet model –CR accelerated at Jet –Target photon: jet+disk+BLR+torus –Relativistic beaming; bright Core model –CR accelerated at core region: disk or near BH –Target: disk photon –Isotropic emission; high pion production efficiency Accretion disk (UV, X) Dust torus (IR) Broad line region (optical, UV) CR

Model uncertainty L ~L CR *f  (n,r…) Assumption: –Murase+14 (jet model) L CR =  CR L rad; ;need  CR > –Stecker 91,92,05,13 (core model) L =L x, 10%L MeV, …

Blazars in IC neutrino fields Blazars in the error box of IC’s neutrinos (three 0.1-1PeV neutrinos): –six resolved + unresolved can produce IC’s neutrinos –assuming ANTARES does not see neutrinos in those fields Integration [TANAMI, Krauß et al. 2014] [ANTARES+TNAMI 2015] !!

Gamma – neutrino connection Connection: I.neutrino -- secondary electron II.neutrino -- secondary gamma-ray III.neutrino -- primary proton/electron

Flat spectrum radio quasar (FSRQ) jets Assume –neutrino flux proportional to gamma flux –FSRQs can account for IC neutrinos Neutrino/gamma flux ratio – (20TeV-2PeV)/  ( GeV)=3.8% gamma (>0.1GeV) is not from hadronic model with cascade emission –where the flux ratio=O(1) –(p-synch still OK) [Fermi-LAT, Ajello+ 2012] Diffuse gamma-ray from FSRQs derived from Fermi-LAT survey Gamma>>neutrino flux [Wang & LZ 15] neutrino gamma

Candidate FSRQs apply the ratio to individual FSRQs predict neutrino flux comparison with IC limit several sources in northern sky overpredicted [Wang & LZ, 2015]

Stacking search 33 bright FSRQs –selected based on gamma flux Prediction/limit>10 northern sky So FSRQs can only account for <10% (<3%) IC neutrinos prediction upper limit sensitivity [Wang & LZ, 2015]

Conclusion & discussion IceCube neutrino origin –Fermi-LAT observations disfavor disfavor Galactic origin (diffuse emission & point sources), GRB, & AGN (FSRQ & BL Lac) jet favor star forming/starburst galaxies –Current stacking limit cannot constrain AGN core model yet Stack more AGN (how many?) AGN jet still possible to be UHE CR sources –AGN neutrinos is a few% diffuse neutrinos; and f  ~a few%, –  CR power maybe consistent with observed UHECR flux

Starburst galaxies: II Fermi-LAT, Ackermann+12

Starburst galaxies: II Local-universe gamma-ray emissivity Redshift-integrated gamma-ray intensity Neutrino flux and spectrum: –if CRs injected with ~E p -2.2 as observed in MW –if <100PeV CRs lose energy significantly as expected in SBs Match both flux and spectrum by IC

IC flux = WB bound? Simply coincident? The same sources for both >10 19 eV CR and IceCube neutrinos? –GRBs in starbursts Wang, Zhao & Li, 2014