Introduction 1-1 2011 session 1 TELE3118 Network Technologies Course Coordinators: Dr. Vijay Sivaraman & Dr. Tim Moors Course web-page https://subjects.ee.unsw.edu.au/tele3118/

Slides:



Advertisements
Similar presentations
Introduction 2 1: Introduction.
Advertisements

Introduction 1-1 Chapter 1: Introduction Our goal:  get “feel” and terminology  more depth, detail later in course  approach:  use Internet as example.
James 1:5 If any of you lacks wisdom, he should ask God, who gives generously to all without finding fault, and it will be given to him.
Introduction1-1 CSE4213 Computer Networks II Chapter 1 Introduction Course page:
Introduction1-1 How does the Internet Work Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross Addison-Wesley,
Introduction1-1 Chapter 1: Introduction Our goal:  get context, overview, “feel” of networking  more depth, detail later in course  approach: m descriptive.
Introduction1-1 Introduction to Computer Networks Our goal:  get “feel” and terminology  more depth, detail later in course  approach:  use Internet.
Lecture 2 Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit.
Networking Based on the powerpoint presentation of Computer Networking: A Top Down Approach Featuring the Internet, Third Edition, J.F. Kurose and K.W.
Introduction1-1 Chapter 1: Introduction  get context, overview, “feel” of networking  more depth, detail later in course  approach: m descriptive m.
Introduction1-1 Communication Systems Lecturer Dr. Marina Kopeetsky Lecture 1: Introduction Computer Networking: A Top Down Approach Featuring the Internet,
Lecture 1 Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network structure,
Network core.
Lecture Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  network structure,
1: Introduction1 Protocol “Layers” Networks are complex! r many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware,
1-1 Foundation Objectives: 1.1 What’s the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure and.
Introduction1-1 Chapter 1: Introduction Our goal:  get “feel” and terminology  more depth, detail later in course  approach: m use Internet as example.
Lecture Internet Overview: roadmap 1.1 What is the Internet? (A simple overview last week) Today, A closer look at the Internet structure! 1.2 Network.
1: Introduction1 Part I: Introduction Chapter goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m descriptive.
Introduction1-1 Network Overview. Introduction1-2 A closer look at network structure:  network edge: applications and hosts  network core: m routers.
Networking Based on the powerpoint presentation of Computer Networking: A Top Down Approach Featuring the Internet, Third Edition, J.F. Kurose and K.W.
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Lecture Internet Overview: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
Introduction1-1 Data Communication and Networks Lecture 2 Overview (Part 2) September 16, 2004 Joseph Conron Computer Science Department New York University.
Introduction to Packet Switching 1-1. Introduction 1-2 What is the Internet 1.1 What is the Internet? 1.2 Network edge  end systems, access networks,
What’s the Internet: “nuts and bolts” view
1: Introduction1 Part I: Introduction Goal: r get context, overview, “feel” of networking r more depth, detail later in course r approach: m descriptive.
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April Reading.
CS 3830 Day 2 Introduction 1-1. Announcements  Program 1 posted on the course web  Project folder must be in 1DropBox on S drive by: 9/14 at 3pm  Must.
Computer Networking Introduction, Part I. Lecture #1: Part I: Introduction Chapter goal: get context, overview, “feel” of networking.
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
2-1 Last time  Course mechanics  What is the Internet?  hosts, routers, communication links  communications services, protocols  Network Edge  client-server,
Slides originally from Professor Williamson at U Calgary1-1 Introduction Part II  Network Core  Delay & Loss in Packet-switched Networks  Structure.
Sharif University of Technology, Kish Islan Campus 1 Internet networking basics These power point slides have been adapted from slides prepared by authors.
CS 381 Introduction to computer networks Chapter 1 - Lecture 4 2/10/2015.
Instructor: Christopher Cole Some slides taken from Kurose & Ross book IT 347: Chapter 1.
Networking Networking 101 Notes are adapted from chapter-1 in the textbook Multimedia Streaming {week-2} Mohamed Abdel-Maguid Computer Networking:
Introduction1-1 Course Code:EE/TE533 Instructor: Muddathir Qamar.
CS 3214 Computer Systems Godmar Back Lecture 23. Announcements Project 5 due Dec 8 Exercise 10 handed out Exercise 11 coming before Thanksgiving CS 3214.
Introduction 1-1 Chapter 1 Introduction Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley, April 2009.
Introduction Switches and Access. 2 Chapter 1 Introduction Computer Networking: A Top Down Approach Featuring the Internet, 5 rd edition. Jim.
Chapter 1: Introduction Our goal:  get “feel” and terminology  more depth, detail later in course Overview:  what’s the Internet  what’s a protocol?
Introduction 1-1 “Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from.
Chapter 1 Introduction Circuit/Packet Switching Protocols Computer Networking: A Top Down Approach, 5 th edition. Jim Kurose, Keith Ross Addison-Wesley,
RSC Part I: Introduction Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are, mainly, part of the companion slides to.
Lecture 5: Internetworking: A closer View By Dr. Najla Al-Nabhan Introduction 1-1.
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
TCP/IP Network.
Introduction1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge 1.3 Network core 1.4 Network access and physical media 1.5 Internet structure.
1 Network Core and Network Edge By Muhammad Hanif To BS IT 4 th Semester.
1: Introduction1 Introduction 3. 1: Introduction2 Delay in packet-switched networks packets experience delay on end-to-end path r four sources of delay.
Introduction 1-1 Chapter 1: roadmap 1.1 What is the Internet? 1.2 Network edge  end systems, access networks, links 1.3 Network core  circuit switching,
EEC-484/584 Computer Networks
1: Introduction1 Protocol “Layers” Networks are complex! r many “pieces”: m hosts m routers m links of various media m applications m protocols m hardware,
Introduction1-1 Chapter 1 Computer Networks and the Internet Computer Networking: A Top Down Approach Featuring the Internet, 2 nd edition. Jim Kurose,
Introduction1-1 Computer Network (  Instructor  Ai-Chun Pang 逄愛君, m Office Number: 417  Textbook.
Lecture 2: Internet Structure & Internetworking By Dr. Najla Al-Nabhan edited by Maysoon Al Duwais Introduction 1-1.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 2 Omar Meqdadi Department of Computer Science and Software Engineering.
Introduction session 1 TELE3118 Network Technologies Course Coordinator and Lecturer: A/Prof. Vijay Sivaraman Course web-page
Introduction 1-1 1DT057 Distributed Information Systems Chapter 1 Introduction.
A special acknowledge goes to J.F Kurose and K.W. Ross Some of the slides used in this lecture are adapted from their original slides that accompany the.
Introduction1-1 Data Communications and Computer Networks Chapter 1 CS 3830 Lecture 3 Omar Meqdadi Department of Computer Science and Software Engineering.
CS 5565 Network Architecture and Protocols
Graciela Perera Introduction Graciela Perera
Part 0: Networking Review
Chapter 1: Introduction
An Aleksandar,   Accounts have been created for any students in EECS 340 who did not already have one.  Physical access to the labs has.
Chapter 1: Introduction
Presentation transcript:

Introduction session 1 TELE3118 Network Technologies Course Coordinators: Dr. Vijay Sivaraman & Dr. Tim Moors Course web-page

Introduction 1-2 Course Objectives  Understand principles of data networking  Understand layered model (bottom-up): m Physical layer m Data-link layer m Network layer m Transport layer m Application layer  Detailed knowledge and hands-on experience with TCP / IP / Ethernet network systems

Introduction 1-3 Internet History  1961: Kleinrock - queueing theory shows effectiveness of packet- switching  1964: Baran - packet- switching in military nets  1967: ARPAnet conceived by Advanced Research Projects Agency  1969: first ARPAnet node operational  1972: m ARPAnet demonstrated publicly m NCP (Network Control Protocol) first host- host protocol m first program m ARPAnet has 15 nodes : Early packet-switching principles

Introduction 1-4 Internet History  1970: ALOHAnet satellite network in Hawaii  1973: Metcalfe’s PhD thesis proposes Ethernet  1974: Cerf and Kahn - architecture for interconnecting networks  late70’s: proprietary architectures: DECnet, SNA, XNA  late 70’s: switching fixed length packets (ATM precursor)  1979: ARPAnet has 200 nodes Cerf and Kahn’s internetworking principles: m minimalism, autonomy - no internal changes required to interconnect networks m best effort service model m stateless routers m decentralized control define today’s Internet architecture : Internetworking, new and proprietary nets

Introduction 1-5 Internet History  Early 1990’s: ARPAnet decommissioned  1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)  early 1990s: Web m hypertext [Bush 1945, Nelson 1960’s] m HTML, HTTP: Berners-Lee m 1994: Mosaic, later Netscape m late 1990’s: commercialization of the Web Late 1990’s – 2000’s:  more killer apps: instant messaging, P2P file sharing  network security to forefront  est. 50 million host, 100 million+ users  backbone links running at Gbps 1990, 2000’s: commercialization, the Web, new apps

Introduction 1-6 What’s the Internet: “nuts and bolts” view  millions of connected computing devices: hosts = end systems  running network apps  communication links m fiber, copper, radio, satellite m transmission rate = bandwidth  routers: forward packets (chunks of data) local ISP company network regional ISP router workstation server mobile

Introduction 1-7 What’s the Internet: “nuts and bolts” view  protocols control sending, receiving of msgs m e.g., TCP, IP, HTTP, FTP, PPP  Internet: “network of networks” m loosely hierarchical m public Internet versus private intranet  Internet standards m RFC: Request for comments m IETF: Internet Engineering Task Force local ISP company network regional ISP router workstation server mobile

Introduction 1-8 What’s the Internet: a service view  communication infrastructure enables distributed applications: m Web, , games, e- commerce, file sharing  communication services provided to apps: m Connectionless unreliable m connection-oriented reliable

Introduction 1-9 What’s a protocol? human protocols:  “what’s the time?”  “I have a question”  introductions … specific msgs sent … specific actions taken when msgs received, or other events network protocols:  machines rather than humans  all communication activity in Internet governed by protocols protocols define format, order of msgs sent and received among network entities, and actions taken on msg transmission, receipt

Introduction 1-10 A closer look at network structure  network edge: applications and hosts  network core: m routers m network of networks  access networks, physical media: communication links

Introduction 1-11 The network edge:  end systems (hosts): m run application programs m e.g. Web, m at “edge of network”  client/server model m client host requests, receives service from always-on server m e.g. Web browser/server; client/server  peer-peer model: m minimal (or no) use of dedicated servers m e.g. Gnutella, KaZaA

Introduction 1-12 The Network Core  mesh of interconnected routers  the fundamental question: how is data transferred through net? m circuit switching: dedicated circuit per call: telephone net m packet-switching: data sent thru net in discrete “chunks”

Introduction 1-13 Network Core: Circuit Switching End-end resources reserved for “call”  link bandwidth, switch capacity  dedicated resources: no sharing  circuit-like (guaranteed) performance  call setup required

Introduction 1-14 Network Core: Circuit Switching network resources (e.g., bandwidth) divided into “pieces”  pieces allocated to calls  resource piece idle if not used by owning call (no sharing)  dividing link bandwidth into “pieces” m frequency division m time division

Introduction 1-15 Circuit Switching: FDM and TDM FDM frequency time TDM frequency time 4 users Example:

Introduction 1-16 Network Core: Packet Switching each end-end data stream divided into packets  user A, B packets share network resources  each packet uses full link bandwidth  resources used as needed resource contention:  aggregate resource demand can exceed amount available  congestion: packets queue, wait for link use  store and forward: packets move one hop at a time m Node receives complete packet before forwarding Bandwidth division into “pieces” Dedicated allocation Resource reservation

Introduction 1-17 Packet Switching: Statistical Multiplexing Sequence of A & B packets does not have fixed pattern  statistical multiplexing. In TDM each host gets same slot in revolving TDM frame. A B C 10 Mb/s Ethernet 1.5 Mb/s D E statistical multiplexing queue of packets waiting for output link

Introduction 1-18 Packet switching versus circuit switching  1 Mb/s link  each user: m 100 kb/s when “active” m active 10% of time  circuit-switching: m 10 users  packet switching: m with 35 users, probability > 10 active less than.0004 Packet switching allows more users to use network! N users 1 Mbps link

Introduction 1-19 Packet switching versus circuit switching  Great for bursty data m resource sharing m simpler, no call setup  Excessive congestion: packet delay and loss m protocols needed for reliable data transfer, congestion control  Q: How to provide circuit-like behavior? m bandwidth guarantees needed for audio/video apps m still an unsolved problem (chapter 6) Is packet switching a “slam dunk winner?”

Introduction 1-20 Access networks Q: How to connect end systems to edge router?  residential access nets  institutional access networks (school, company)  mobile access networks Keep in mind:  bandwidth (bits per second) of access network?  shared or dedicated?

Introduction 1-21 Residential access: point to point access  Dialup via modem m up to 56Kbps direct access to router (often less) m Can’t surf and phone at same time: can’t be “always on”  ADSL: asymmetric digital subscriber line m up to 1 Mbps upstream (today typically < 256 kbps) m up to 8 Mbps downstream (today typically < 1 Mbps) m FDM: 50 kHz - 1 MHz for downstream 4 kHz - 50 kHz for upstream 0 kHz - 4 kHz for ordinary telephone

Introduction 1-22 Residential access: cable modems  HFC: hybrid fiber coax m asymmetric: up to 30Mbps downstream, 2 Mbps upstream  Shared media home cable headend cable distribution network (simplified) Typically 500 to 5,000 homes

Introduction 1-23 Company access: local area networks  company/univ local area network (LAN) connects end system to edge router  Ethernet: m shared or dedicated link connects end system and router m 10 Mbs, 100Mbps, Gigabit Ethernet  LANs: chapter 5

Introduction 1-24 Wireless access networks  shared wireless access network connects end system to router m via base station aka “access point”  wireless LANs: m b (WiFi): 11 Mbps  wider-area wireless access m provided by telco operator m 3G ~ 384 kbps Will it happen?? m WAP/GPRS in Europe base station mobile hosts router

Introduction 1-25 Home networks Typical home network components:  ADSL or cable modem  router/firewall/NAT  Ethernet  wireless access point wireless access point wireless laptops router/ firewall cable modem to/from cable headend Ethernet

Introduction 1-26 Internet structure: network of networks  roughly hierarchical  at center: “tier-1” ISPs (e.g., UUNet, BBN/Genuity, Sprint, AT&T), national/international coverage m treat each other as equals Tier 1 ISP Tier-1 providers interconnect (peer) privately NAP Tier-1 providers also interconnect at public network access points (NAPs)

Introduction 1-27 Tier-1 ISP: e.g., Sprint Sprint US backbone network

Introduction 1-28 Internet structure: network of networks  “Tier-2” ISPs: smaller (often regional) ISPs m Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs Tier 1 ISP NAP Tier-2 ISP Tier-2 ISP pays tier-1 ISP for connectivity to rest of Internet  tier-2 ISP is customer of tier-1 provider Tier-2 ISPs also peer privately with each other, interconnect at NAP

Introduction 1-29 Internet structure: network of networks  “Tier-3” ISPs and local ISPs m last hop (“access”) network (closest to end systems) Tier 1 ISP NAP Tier-2 ISP local ISP local ISP local ISP local ISP local ISP Tier 3 ISP local ISP local ISP local ISP Local and tier- 3 ISPs are customers of higher tier ISPs connecting them to rest of Internet

Introduction 1-30 Internet structure: network of networks  a packet passes through many networks! Tier 1 ISP NAP Tier-2 ISP local ISP local ISP local ISP local ISP local ISP Tier 3 ISP local ISP local ISP local ISP

Introduction 1-31 Loss and delay in Packet Switched Networks packets queue in router buffers  packet arrival rate to link exceeds output link capacity  packets queue, wait for turn A B packet being transmitted (delay) packets queueing (delay) free (available) buffers: arriving packets dropped (loss) if no free buffers

Introduction 1-32 Four sources of packet delay  1. nodal processing: m check bit errors m determine output link A B propagation transmission nodal processing queueing  2. queueing m time waiting at output link for transmission m depends on congestion level of router

Introduction 1-33 Four sources of packet delay 3. Transmission delay:  R=link bandwidth (bps)  L=packet length (bits)  time to send bits into link = L/R 4. Propagation delay:  d = length of physical link  s = propagation speed in medium (~2x10 8 m/sec)  propagation delay = d/s A B propagation transmission nodal processing queueing Note: s and R are very different quantities!

Introduction 1-34 Nodal delay  d proc = processing delay m typically a few microsecs or less  d queue = queuing delay m depends on congestion  d trans = transmission delay m = L/R, significant for low-speed links  d prop = propagation delay m a few microsecs to hundreds of msecs

Introduction 1-35 “Real” Internet delays and routes  What do “real” Internet delay & loss look like?  Traceroute program: provides delay measurement from source to router along end-end Internet path towards destination. For all i: m sends three packets that will reach router i on path towards destination m router i will return packets to sender m sender times interval between transmission and reply. 3 probes

Introduction 1-36 “Real” Internet delays and routes 1 cs-gw ( ) 1 ms 1 ms 2 ms 2 border1-rt-fa5-1-0.gw.umass.edu ( ) 1 ms 1 ms 2 ms 3 cht-vbns.gw.umass.edu ( ) 6 ms 5 ms 5 ms 4 jn1-at wor.vbns.net ( ) 16 ms 11 ms 13 ms 5 jn1-so wae.vbns.net ( ) 21 ms 18 ms 18 ms 6 abilene-vbns.abilene.ucaid.edu ( ) 22 ms 18 ms 22 ms 7 nycm-wash.abilene.ucaid.edu ( ) 22 ms 22 ms 22 ms ( ) 104 ms 109 ms 106 ms 9 de2-1.de1.de.geant.net ( ) 109 ms 102 ms 104 ms 10 de.fr1.fr.geant.net ( ) 113 ms 121 ms 114 ms 11 renater-gw.fr1.fr.geant.net ( ) 112 ms 114 ms 112 ms 12 nio-n2.cssi.renater.fr ( ) 111 ms 114 ms 116 ms 13 nice.cssi.renater.fr ( ) 123 ms 125 ms 124 ms 14 r3t2-nice.cssi.renater.fr ( ) 126 ms 126 ms 124 ms 15 eurecom-valbonne.r3t2.ft.net ( ) 135 ms 128 ms 133 ms ( ) 126 ms 128 ms 126 ms 17 * * * 18 * * * 19 fantasia.eurecom.fr ( ) 132 ms 128 ms 136 ms traceroute: gaia.cs.umass.edu to Three delay measements from gaia.cs.umass.edu to cs-gw.cs.umass.edu * means no reponse (probe lost, router not replying) trans-oceanic link

Introduction 1-37 Packet loss  queue (aka buffer) preceding link in buffer has finite capacity  when packet arrives to full queue, packet is dropped (aka lost)  lost packet may be retransmitted by previous node, by source end system, or not retransmitted at all

Introduction 1-38 Internet protocol stack  application: supporting network applications m FTP, SMTP, STTP  transport: host-host data transfer m TCP, UDP  network: routing of datagrams from source to destination m IP, routing protocols  link: data transfer between neighboring network elements m PPP, Ethernet  physical: bits “on the wire” application transport network link physical

Introduction 1-39 message segment datagram frame source application transport network link physical HtHt HnHn HlHl M HtHt HnHn M HtHt M M destination application transport network link physical HtHt HnHn HlHl M HtHt HnHn M HtHt M M network link physical link physical HtHt HnHn HlHl M HtHt HnHn M HtHt HnHn HlHl M HtHt HnHn M HtHt HnHn HlHl M HtHt HnHn HlHl M router switch Encapsulation

Introduction 1-40 Introduction: Summary Covered a “ton” of material!  Internet overview / history  what’s a protocol?  network edge, core, access network m packet-switching versus circuit-switching  Internet/ISP structure  performance: loss, delay  layering and service models You now have:  context, overview, “feel” of networking  more depth, detail to follow!