Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences.

Slides:



Advertisements
Similar presentations
Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Advertisements

Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
The University of Tokyo
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Study of universal few-body states in 7 Li - open answers to open questions, or everything I have learned on physics of ultracold lithium atoms. (A technical.
Understanding Feshbach molecules with long range quantum defect theory Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland EuroQUAM.
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Universal Thermodynamics of a Unitary Fermi gas Takashi Mukaiyama University of Electro-Communications.
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
The Efimov Effect in Ultracold Gases Weakly Bounds Systems in Atomic and Nuclear Physics March , 2010 Institut für Experimentalphysik, Universität.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Numerical Studies of Universality in Few-Boson Systems Javier von Stecher Department of Physics and JILA University of Colorado Probable configurations.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Observation of universality in 7 Li three-body recombination across a Feshbach resonance Lev Khaykovich Physics Department, Bar Ilan University,
Semi-Classical Methods and N-Body Recombination Seth Rittenhouse ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, MA Efimov States.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Strongly Interacting Atoms in Optical Lattices Javier von Stecher JILA and Department of Physics, University of Colorado Support INT 2011 “Fermions from.
Universal Spin Transport in Strongly Interacting Fermi Gases Ariel Sommer Mark Ku, Giacomo Roati, Martin Zwierlein MIT INT Experimental Symposium May 19,
What can we learn about quantum gases from 2- and 3-atom problems? Fei Zhou University of British Columbia, Vancouver at Institute for Nuclear Theory,
Cold Atomic and Molecular Collisions
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
Дубна, 3 декабря 2014 V.S.Melezhik BLTP JINR, Dubna.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
ULTRACOLD COLLISIONS IN THE PRESENCE OF TRAPPING POTENTIALS ZBIGNIEW IDZIASZEK Institute for Quantum Information, University of Ulm, 18 February 2008 Institute.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Experiments with ultracold atomic gases
Cold Atomic and Molecular Collisions 1. Basics 2. Feshbach resonances 3. Photoassociation Paul S. Julienne Quantum Processes and Metrology Group Atomic.
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Three-body recombination at vanishing scattering lengths in ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel.
Experimental study of universal few-body physics with ultracold atoms Lev Khaykovich Physics Department, Bar-Ilan University, Ramat Gan, Israel Laboratoire.
Observation of an Efimov spectrum in an atomic system Matteo Zaccanti LENS, University of Florence.
Towards a finite ensemble of ultracold fermions Timo Ottenstein Max-Planck-Institute for Nuclear Physics Heidelberg 19th International IUPAP Conference.
Efimov Physics in a Many-Body Background
Photoassociation Spectroscopy of Ytterbium Atoms with Dipole-allowed and Intercombination Transitions K. Enomoto, M. Kitagawa, K. Kasa, S. Tojo, T. Fukuhara,
Few-body physics with ultracold fermions Selim Jochim Physikalisches Institut Universität Heidelberg.
Spin-statistics theorem As we discussed in P301, all sub-atomic particles with which we have experience have an internal degree of freedom known as intrinsic.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
Ultracold Polar Molecules in Gases and Lattices Paul S. Julienne Joint Quantum Institute, NIST and The University of Maryland Quantum Technologies Conference:
Efimov Physics with Ultracold Atoms Selim Jochim Max-Planck-Institute for Nuclear Physics and Heidelberg University.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Experimental study of Efimov scenario in ultracold bosonic lithium
Triatomic states in ultracold gases Marcelo Takeshi Yamashita Universidade Estadual Paulista - Brazil  Lauro Tomio – IFT / Unesp  Tobias Frederico –
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Scales of critically stable few-body halo system Tobias Frederico Instituto Tecnológico de Aeronáutica São José dos Campos - Brazil  Marcelo T. Yamashita.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites John Huckans.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Ultracold Helium Research Roel Rozendaal Rob van Rooij Wim Vassen.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
Adiabatic hyperspherical study of triatomic helium systems
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Agenda Brief overview of dilute ultra-cold gases
MICRA: status report Exploration of atom-surface forces on a micrometric scale via high sensitivity force measurements with ultracold quantum gases. Objectives:
Deterministic preparation and control of a few fermion system.
Extremely dilute, but strongly correlated: Experiments with ultracold fermions.
Center for Quantum Physics Innsbruck Center for Quantum Physics Innsbruck Austrian Academy of Sciences Austrian Academy of Sciences University strongly.
Quantum simulations with cold atoms: from solid-state to high-energy physics and cosmology Vladimir S. Melezhik Bogoliubov Laboratory of Theoretical Physics.
strongly interacting fermions: from spin mixtures to mixed species
Making cold molecules from cold atoms
Spectroscopy of ultracold bosons by periodic lattice modulations
Presentation transcript:

Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences University of Innsbruck FB18, Santos, 26 Aug 06

Efimov physics in ultracold gases Efimov physics in ultracold gases Rudolf Grimm “Center for Quantum Optics” in Innsbruck Austrian Academy of Sciences University of Innsbruck

1995: Bose-Einstein condensation 2003: molecular condensates 1999: degenerate Fermi gas 2004/05: fermionic condensates and superfluids milestones in the field 2002/03: ultracold dimers cold atoms in a nutshell atom trap: electromagnetic field (our case: focus of powerful infrared laser) cooling to nanokelvin: laser cooling & subsequent evaporative cooling atomic species: bosons and fermions nK 2006: Efimov states !!! BEC interaction tuning through Feshbach resonances !

molecular structure: scattering length r U(r) incident channel B a s­wave scattering length a determined by last bound level a bg last bound level many vib. levels

molecular structure: scattering length B a a bg r U(r) incident channel bound state coupling

Feshbach resonance r U(r) incident channel bound state magnetic moment of bound state differs from the magnetic moment of the incident channel B a s­wave scattering length a as a function of magnetic field B a bg B0B0 coupling

very large scattering lenghts r r0r0 U(r)  r  „quantum halo states“: deuteron, He 2, Feshbach molecules !!! weakly bound last level: scattering length a>>r 0 binding energy E b = - h 2 /(ma 2 ) a system with universal properties !!! weakly bound last level: scattering length a>>r 0 binding energy E b = - h 2 /(ma 2 ) a system with universal properties !!! open-channel dominated resonance: single-channel model

energy 1/a quantum states near two-body resonance a < 0 a > 0 E dimer =  h 2 /(ma 2 ) weakly bound dimer

energy 1/a quantum states near two-body resonance weakly bound trimer a < 0 a > 0 even more weakly bound trimer ×22.7 ×(22.7) 2 infinite series of weakly bound trimer states for resonant two-body interaction „Efimov states“ infinite series of weakly bound trimer states for resonant two-body interaction „Efimov states“

36 years ago...

35 years ago...

energy 1/a Efimov resonances a < 0 a > 0 three atoms couple to an Efimov trimer: „ triatomic Efimov resonance“ three atoms couple to an Efimov trimer: „ triatomic Efimov resonance“ one atom and a dimer couple to an Efimov trimer: „atom-dimer Efimov resonance“ one atom and a dimer couple to an Efimov trimer: „atom-dimer Efimov resonance“ resonance scenarios predicted in Sov. J. Nucl. Phys. 29, 546 (1979) resonance scenarios predicted in Sov. J. Nucl. Phys. 29, 546 (1979)

energy 1/a universality a < 0 a > 0 universality discussed in Sov. J. Nucl. Phys. 29, 546 (1979) universality discussed in Sov. J. Nucl. Phys. 29, 546 (1979)

energy 1/a universality a < 0 a > 0 universality discussed in Sov. J. Nucl. Phys. 29, 546 (1979) universality discussed in Sov. J. Nucl. Phys. 29, 546 (1979)

energy 1/a universality a < 0 a > 0 universality discussed in Sov. J. Nucl. Phys. 29, 546 (1979) universality discussed in Sov. J. Nucl. Phys. 29, 546 (1979) locations of Efimov states / resonance positions not universal !!! additional parameter needed locations of Efimov states / resonance positions not universal !!! additional parameter needed

experimental observations nuclear physics (Halo nuclei) molecular physics (He beams) ultracold atom physics none ! many new opportunities for Efimov-related few-body physics !

the probe three-body recombination atomic systems have deeply bound dimers states

three-body recombination

three-body recomb. theory basics L 3 : three-body loss coefficient [cm 6 /s] Fedichev et al., PRL 77, 2921 (1996) prediction of a 4 scaling, C = 3.9 Nielsen & Macek, PRL 83, 1566 (1999) Esry et al., PRL 83, 1751 (1999) Bedaque et al., PRL 85, 908 (2000) Braaten & Hammer, PRL 87, (2001) C(a) = C(22.7a) with upper limit ~70 for a>0 oscillatory behavior × e  ~ 22.7

Esry-Greene-Burke theory PRL 83, 1751 (1999) calculations for a sech 2 (r ij /r 0 ) model potential definition of a recombination length L3~a4L3~a4 L3~a4L3~a4 destructive interference effect destructive interference effect Efimov resonance !

Three-body loss coefficient loss into deeply bound molecules loss into shallow dimer effective field theory (Braaten & Hammer) Efimov resonances Phys. Rep. 428, 259 (2006)

ultracold.at oms Innsbruck two teams working on Efimov physics with ultracold cesium atoms T. Kraemer, M. Mark, J. Danzl, S. Knoop, F. Ferlaino B. Engeser, K. Pilch, A. Lange two teams working on Efimov physics with ultracold cesium atoms T. Kraemer, M. Mark, J. Danzl, S. Knoop, F. Ferlaino B. Engeser, K. Pilch, A. Lange H.-C. Nägerl, R. Grimm

magnetic tunability of Cs 150 G 50 G100 G magnetic field (G) scattering length (a 0 ) F=3, m F =3 0 there should be an Efimov resonance !

Cs BEC

exp. results ! T = 10nK 200nKtriatomic Efimov resonance Braaten-Hammer theory  *=1/210a 0,  *=0.06

exp. results ! Braaten- Hammer theory Esry, Greene, Burke theory 1999 ! !triatomic Efimov resonance T = 10nK 200nK

exp. results (again) T = 10nK 200nK higher temperature (200nK) recombination rate is unitarity limited & shift of loss maximum higher temperature (200nK) recombination rate is unitarity limited & shift of loss maximum

triatomic continuum resonance 1/a Efimov-trimer 200 nK 100 nK 50 nK Efimov-resonance (a<0) E=0 Bringas, Yamashita, Frederico, PRA 69, (R) (2004)

resonance shift B. Engeser et al., to be published linear fit theoretical calculations of T-dependent shift by three groups: Yamashita et al., Esry et al., S. Jonsell (work in progress)

energy 1/a Efimov resonances a < 0 a > 0 resonance scenarios predicted in Sov. J. Nucl. Phys. 29, 546 (1979) resonance scenarios predicted in Sov. J. Nucl. Phys. 29, 546 (1979) triatomic atom-dimer

energy structure of cesium atoms dimers

energy structure of cesium dimers atoms we can measure inelastic atom-dimer collisions at various magnetic fields ! we can measure inelastic atom-dimer collisions at various magnetic fields !

inelastic atom-dimer collisions atom-dimer resonance new ! Aug. 06

inelastic atom-dimer collisions a  400a 0 atom-dimer resonance +r 0 -r 0 universal ???

outlook

outlook I taking full advantage of Cs tunability our expts so far the ideal Feshbach resonance for Efimov physics ?! can we see the full Efimov period (x22.7) ?

outlook II spectroscopy on Efimov states (rf-spectroscopy or modulation method) energy 1/a a < 0 a > 0 h

outlook III Few-body physics & Efimov states in an optical lattice  optical lattice: a 3D array of nanotraps Stoll & Köhler, PRA 71, (2005) making Efimov trimers in an optical lattice 85 Rb

outlook IV other three-body systems a 12 a 23 a 13 three non-identical particles equal masses 6 Li lowest three spin states mixed-species systems different masses M m M many combinations available Bose-Bose, Bose-Fermi, Fermi-Fermi e.g., mass ratio 6 Li- 174 Yb 1:29

outlook V four-body physics energy 1/a a < 0 a > 0 D+A A+A+A Tri Tri

outlook V four-body physics energy 1/a a < 0 a > 0 D+A+A D+D A+A+A+A Tri+A Tri+A Tetramer states ? dimer-dimer scattering resonances?

Conclusion ultracold atoms nanokelvin Feshbach resonances FB ultracold atoms with tunable interactions a new era of few-body physics is just beginning! ultracold atoms with tunable interactions a new era of few-body physics is just beginning!

loss minimum three-body loss after 200ms storage in recompressed trap minimum at 210a 0 half Efimov period (22.7 1/2 ): min.-max. loss ! expt. optimization of evaporative cooling towards BEC ! → 210a 0 ! Kraemer et al., Appl. Phys. B 79, 1013 (2004) but r 0  100a 0 (vdW range): applicability of universal theory questionable ! but r 0  100a 0 (vdW range): applicability of universal theory questionable !