Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri,

Slides:



Advertisements
Similar presentations
Un condensat de chrome pour létude des interactions dipolaires. Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Advertisements

Creating new states of matter:
Dynamics of Spin-1 Bose-Einstein Condensates
Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute Zero Bose-Bose Mixtures: atoms, molecules and thermodynamics near the Absolute.
Rotations and quantized vortices in Bose superfluids
Anderson localization in BECs
Rydberg physics with cold strontium James Millen Durham University – Atomic & Molecular Physics group.
Strongly Correlated Systems of Ultracold Atoms Theory work at CUA.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Probing many-body systems of ultracold atoms E. Altman (Weizmann), A. Aspect (CNRS, Paris), M. Greiner (Harvard), V. Gritsev (Freiburg), S. Hofferberth.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Stability of a Fermi Gas with Three Spin States The Pennsylvania State University Ken O’Hara Jason Williams Eric Hazlett Ronald Stites Yi Zhang John Huckans.
New physics with polar molecules Eugene Demler Harvard University Outline: Measurements of molecular wavefunctions using noise correlations Quantum critical.
Lecture II Non dissipative traps Evaporative cooling Bose-Einstein condensation.
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Studying dipolar effects in degenerate quantum gases of chromium atoms G. Bismut 1, B. Pasquiou 1, Q. Beaufils 1, R. Chicireanu 2, T. Zanon 3, B. Laburthe-Tolra.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Determination of Spin-Lattice Relaxation Time using 13C NMR
Have left: B. Pasquiou (PhD), G. Bismut (PhD), A. Chotia, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Elastic and inelastic dipolar effects in chromium Bose-Einstein condensates Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
T. Koch, T. Lahaye, B. Fröhlich, J. Metz, M. Fattori, A. Griesmaier, S. Giovanazzi and T. Pfau 5. Physikalisches Institut, Universität Stuttgart Assisi.
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Experiments with Trapped Potassium Atoms Robert Brecha University of Dayton.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
Spectroscopy of a forbidden transition in a 4 He BEC and a 3 He degenerate Fermi gas Rob van Rooij, Juliette Simonet*, Maarten Hoogerland**, Roel Rozendaal,
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
E. Maréchal, O. Gorceix, P. Pedri, Q. Beaufils, B. Laburthe, L. Vernac, B. Pasquiou (PhD), G. Bismut (PhD) Excitation of a dipolar BEC and Quantum Magnetism.
Collective excitations in a dipolar Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Collaborations: L. Santos (Hannover) Students: Antoine Reigue, Ariane A.de Paz (PhD), B. Naylor, A. Sharma (post-doc), A. Chotia (post doc), J. Huckans.
Ultracold collisions in chromium: d-wave Feshbach resonance and rf-assisted molecule association Q. Beaufils, T. Zanon, B. Laburthe, E. Maréchal, L. Vernac.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
All-optical production of chromium BECs Bessel Engineering of Chromium Bruno Laburthe Tolra Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse.
Trap loss of spin-polarized 4 He* & He* Feshbach resonances Joe Borbely ( ) Rob van Rooij, Steven Knoop, Wim Vassen.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators: Anne.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France B. Laburthe-Tolra.
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
Have left: B. Pasquiou (PhD), G. Bismut (PhD), M. Efremov, Q. Beaufils (PhD), J.C. Keller, T. Zanon, R. Barbé, A. Pouderous (PhD), R. Chicireanu (PhD)
Resonant dipole-dipole energy transfer from 300 K to 300μK, from gas phase collisions to the frozen Rydberg gas K. A. Safinya D. S. Thomson R. C. Stoneman.
Prospects for ultracold metastable helium research: phase separation and BEC of fermionic molecules R. van Rooij, R.A. Rozendaal, I. Barmes & W. Vassen.
Dipolar chromium BECs, and magnetism
Lecture 2. Why BEC is linked with single particle quantum behaviour over macroscopic length scales Interference between separately prepared condensates.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Collaboration: L. Santos (Hannover) Former post doctorates : A. Sharma, A. Chotia Former Students: Antoine Reigue A. de Paz (PhD), B. Naylor (PhD), J.
Have left: A. Chotia, A. Sharma, B. Pasquiou, G. Bismut, M. Efremov, Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborators:
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Elastic and inelastic dipolar effects in chromium BECs Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Former PhD students.
Duke University, Physics Department and the Fitzpatrick Institute for Photonics · Durham, NC Collective Nonlinear Optical Effects in an Ultracold Thermal.
1 Bose-Einstein condensation of chromium Ashok Mohapatra NISER, Bhubaneswar.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
Aiming at Quantum Information Processing on an Atom Chip Caspar Ockeloen.
Quantum magnetism of ultracold atoms $$ NSF, AFOSR MURI, DARPA Harvard-MIT Theory collaborators: Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Takuya.
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Dipolar relaxation in a Chromium Bose Einstein Condensate Benjamin Pasquiou Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
Have left: Q. Beaufils, J. C. Keller, T. Zanon, R. Barbé, A. Pouderous, R. Chicireanu Collaborator: Anne Crubellier (Laboratoire Aimé Cotton) B. Pasquiou.
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
Magnetization dynamics in dipolar chromium BECs
Matter-wave droplets in a dipolar Bose-Einstein condensate
Dipolar chromium BECs de Paz (PhD), A. Chotia, B. Laburthe-Tolra,
Laboratoire de Physique des Lasers
Spectroscopy of ultracold bosons by periodic lattice modulations
Chromium Dipoles in Optical Lattices
Presentation transcript:

Thermodynamics of Spin 3 ultra-cold atoms with free magnetization B. Pasquiou, G. Bismut (former PhD students), B. Laburthe-Tolra, E. Maréchal, P. Pedri, L. Vernac, O. Gorceix Université Paris 13, Laboratoire de Physique des Lasers, CNRS, UMR 7538, Villetaneuse France Work supported by : Conseil Régional Ile-de-France (Sesame contract), Ministère de l'Education Nationale et de la Recherche (CPER), European Union (Fonds Européen de Développement Régional) and IFRAF Chromium atoms have a large magnetic moment of 6 Bohr magneton : dipole-dipole interactions (DDIs) are much larger than in alkaline atoms. As a consequence, these strong DDIs offer the possibility to investigate the physics of a BEC with free magnetization. When the external magnetic field is lowered to the mGauss range, we observe a spontaneous demagnetization of the BEC : all Zeeman substates become populated. Quantum phase diagram of the chromium BEC (S=3) at low magnetic field Dynamics of the demagnetization Thermodynamics properties below B c Demagnetization of the BEC after a quench of the magnetic field The BECspin composition at low field can be revealed by Stern-Gerlach analysis. The absorption pictures above have been taken after 150 ms of free evolution in the low B field, equal to a) 1 mG; b).5 mg c).25 mG and d) "0" mG. Graduate students are welcome ! Contact interactions dominate, atoms interact through 4 molecular potentials, corresponding to S 2 body = 6, 4, 2 and 0 As a 6 is not the smallest, the ground state is not anymore ferromagnetic at low B field Measured : a 6 = 103 a Bohr, a 4 = 64 a Bohr deduced : a 2 = -7 a Bohr unknown : a 0 Ref Diener et Ho, PRL 96, ; Santos et Pfau, PRL 96, ferromagnetic polar Value of the critical field B c : nematic for n = cm -3, B c = 0,25 mG When lowering the magnetic field below B c, a quantum phase transition is expected B c is reachable even in a non magnetic shielded environment ! That is not the case with alkaline Example : B c = 10 µG for Rb (a 2 -a 0 small) At "B =0", the spin populations are: {18+/-9, 18+/-4, 14+/-1.5, 15+/-3, 17+/-3, 12.5+/-4, 6+/-2} We suddenly reduce the value of the B field from 20 mGauss to a very low value. The field decreases with a 1/e time of 8 ms, set by Eddy currents. We can do the same experiment with the BEC loaded in a 2D optical lattices. Characteristics of the 1D quantum gases: - depth = 25 E R = 120 kHz >> µ = 11 kHz - peak density = cm -3 - larger volume than the BEC (factor 3) Depolarization as a function of the magnetic field Characteristics of the BEC: N atoms = 20000, µ = 4 kHz peak density = cm -3 trap frequencies = 300, 400 and 550 Hz A 3 axis fluxgate sensor located at 15 cm of the chamber measures the B field for control An active compensation drive current in three pairs of large rectangular coils located at 1 m of the BEC ; the measurement of the residual B field fluctuations is made with an other sensor located at 20 cm from the first one Experimental stabilization of the B field Results: AC noise = 500 µG, but is screened by the vacuum chamber DC fluctuations = 100 µ G on a one hour time scale BEC:  <5ms 1D gases:  =15 ms A simple model to account for the depolarization dynamics: We calculate the dynamics for the population transfer in m S =-2 at short time, assuming  -2 << 1. The dynamics between the  -3 and  -2 components is then given by: This gives  -1 = 3 ms and 10 ms for resp. the BEC and the 1D quantum gases The evolution is faster in the BEC case ! For atoms loaded into an optical lattice, the large increase of the (repulsive) contact mean-field forces the cloud to swell. The overall volume of the cloud is then increased by a factor of about three, hence reducing the dipolar mean-field. A slower depolarization dynamics in the lattice is a consequence of the non local character of DDI, and indicates inter-site inelastic dipolar couplings in the lattice. Dynamics for B dd < B < B c is under study Stern Guerlach analysis of the depolarized gas All components remain Bose condensed Other work: we use Bragg scattering to measure the excitation spectrum of the BEC * at "high B fields": due to DDIs, the speed of sound depends on the orientation of B with respect to the one of the momentum transfer - see the poster of Olivier Gorceix on Thursday * below Bc, we have just measured a dramatic change in the excitation spectrum at low q, in the lattice (preliminary results) Our work is described in B. Pasquiou et al., Phys. Rev. Lett. 106, (2011) and Phys. Rev. Lett. 108, (2012) Current work: resonant dipolar relaxation in 3D optical lattices see the poster of Amodsen Chotia on Thursday Other results In the lattice, the orientation of the B field plays no role, showing the effect of intersite coupling: the dipolar interaction Occurs at large interatomic distances Pasquiou et al, PRA The 1/ e widths are compatible with (  ) Thermodynamics properties above B c S=3 spinor gas: the non interacting picture Single component Bose thermodynamics Multi-component Bose thermodynamics B phase BEC in m S =-3 A phase (normal) C phase BEC in each component Evolution at fixed magnetization Evolution for a free magnetization T c1 (M) T c2 (M) B = 0.9 mG > B c Solid line: results of theory without interactions and free magnetization the kink in magnetization reveals BEC T c1 The BEC is ferromagnetic: only atoms in m S =-3 condense The good agreement shows that the system behaves as if there were no interactions (expected for S=1) thermal gas BEC in m=-3 T c1 is the critical temperature for condensation of the spinor gas (in the m S =-3 component) (i.e. in the absolute ground state of the system) Isoshima et al., J. Phys. Soc. Jpn, 69, 12, 3864 (2000) BEC in m S = -3 depolarized thermal gas A « bi-modal » spin distribution A new thermometry Only thermal gas depolarizes Cooling scheme if selective losses for m S > -3 e.g. field gradient m population Boltzmanian fit T spin more accurate at low T ! B < B c B >> B c T c1 T c2 for T c2 < T < T c1 BEC only in m S = -3 for T < T c2 BEC in all m S ! B=B c (T c2 ) B > B c B < B c for B < B c, magnetization remains constant after the demagnetization process independent of T This reveals the non-ferromagnetic nature of the BEC below B c evolution for B > B c evolution for B < B c B c reached Experimental Results Summary of our results Magnetization Reduction of the condensed fraction Almost constant magnetization Due to contact interactions, below Bc we have a multicomponent BEC, with free magnetization due to DDIs, behaving almost like a non- interacting BEC with fixed magnetization