Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U,

Slides:



Advertisements
Similar presentations
Cosmic Ray Test of GEM- MPI/TPC in Magnetic Field Hiroshima University Kuroiwa CDC Group Mar
Advertisements

Study of the Central Tracker for Huge Detector at the Linear Collider Takashi Watanabe Kogakuin University The 7th ACFA Workshop on Physics & Detector.
Amsterdam, March 31, 2003 P. Colas - European R&D for gaseous trackers 1 European gaseous tracking hardware HistoryHistory GEM and MicromegasGEM and Micromegas.
Beijing, August 18, 2004 P. Colas - Micromegas for HEP 1 Recent developments of Micromegas detectors for High Energy Physics Principle of operationPrinciple.
Amsterdam, April 2,2003P. Colas - Micromegas TPC1 Micromegas TPC: New Results and Prospects New tests in magnetic fieldNew tests in magnetic field FeedbackFeedback.
GEM Detector Shoji Uno KEK. 2 Wire Chamber Detector for charged tracks Popular detector in the particle physics, like a Belle-CDC Simple structure using.
D. Peterson, “Status of the Cornell/Purdue Program” TPC R&D Mini Workshop, Orsay 12-January Status of the Cornell/Purdue Program: first events with.
D. Peterson, “ILC Detector Work”, Cornell Group Meeting, 4-October ILC Detector Work This project is supported by the US National Science Foundation.
D. Peterson, “The Cornell/Purdue TPC”, ALCPG, Snowmass, 23-August The Cornell/Purdue TPC Information available at the web site:
Position sensing in a GEM from charge dispersion on a resistive anode Bob Carnegie, Madhu Dixit, Steve Kennedy, Jean-Pierre Martin, Hans Mes, Ernie Neuheimer,
UTA, Jan. 9-11, 2003M. Ronan LC-TPC R&D1 LC-TPC R&D GEM, MicroMEGAS and MWPC techniquesGEM, MicroMEGAS and MWPC techniques Preliminary studiesPreliminary.
Linear Collider TPC R&D in Canada Madhu Dixit Carleton University.
Astrophysics Detector Workshop – Nice – November 18 th, David Attié — on behalf of the LC-TPC Collaboration — Micromegas TPC Large.
SLAC 7-10 Jan. 2004M. Ronan - Micromegas TPC1 Micromegas TPC Magnetic field cosmic ray tests Review of previous Micromegas studies Review of previous Micromegas.
Measurement of gas gain fluctuations M. Chefdeville, LAPP, Annecy TPC Jamboree, Orsay, 12/05/2009.
Carleton University A. Bellerive, K. Boudjemline, R. Carnegie, A. Kochermin, J. Miyamoto, E. Neuheimer, E. Rollin & K. Sachs University of Montreal J.-P.
IHEP, Bejing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
Eunil Won/Korea U1 Vertex/Tracker summary Jul Eunil Won/Korea University.
Linear Collider TPC R&D in Canada Bob Carnegie, Madhu Dixit, Dean Karlen, Steve Kennedy, Jean-Pierre Martin, Hans Mes, Ernie Neuheimer, Alasdair Rankin,
Measurement of MPGD-TPC resolution with charge dispersion in a beam test in a magnet Madhu Dixit TRIUMF/ Carleton University Canada A.Bellerive, K.Boudjemline,
Development of a Time Projection Chamber Using Gas Electron Multipliers (GEM-TPC) Susumu Oda, H. Hamagaki, K. Ozawa, M. Inuzuka, T. Sakaguchi, T. Isobe,
Snowmass, August, 2005P. Colas - Micromegas TPC beam tests1 A.M. Bacala, A. Bellerive, K. Boudjemline, P. Colas, M. Dixit, K. Fujii, A. Giganon, I. Giomataris,
Stanford, Mar 21, 2005P. Colas - Micromegas TPC1 Results from a Micromegas TPC Cosmic Ray Test Berkeley-Orsay-Saclay Progress Report Reminder: the Berkeley-Orsay-
1 Tests of Carleton and MPI TPC's with a resistive foil and a Micromegas readout at the KEK PS beam Vincent Lepeltier LAL Orsay ECFA Vienna, November 14-18th.
Orsay, January 12, 2005P. Colas - Resistive anode Micromegas1 Dan Burke 1, P. Colas 2, M. Dixit 1, I. Giomataris 2, V. Lepeltier 3, A. Rankin 1, K. Sachs.
Astrophysics Detector Workshop – Nice – November 18 th, D. Attié, P. Colas, E. Delagnes, M. Dixit, M. Riallot, Y.-H. Shin, S.
TPC R&D status in Japan T. Isobe, H. Hamagaki, K. Ozawa, and M. Inuzuka Center for Nuclear Study, University of Tokyo Contents 1.Development of a prototype.
1 TRD-prototype test at KEK-FTBL 11/29/07~12/6 Univ. of Tsukuba Hiroki Yokoyama The TRD prototype is borrowed from GSI group (thanks Anton).
EPS-HEP 2015, Vienna. 1 Test of MPGD modules with a large prototype Time Projection Chamber Deb Sankar Bhattacharya On behalf of.
FIRST TEST RESULTS FROM A MICROMEGAS LARGE TPC PROTOTYPE P. Colas (CEA Saclay), on behalf of the LC-TPC collaboration Micromegas with resistive anode:
GEM-TPC Resolution Studies ECFA/DESY LC Workshop Prague, November 2002 Dean Karlen University of Victoria / TRIUMF.
TPC PAD Optimization Yukihiro Kato (Kinki Univ.) 1.Motivation 2.Simple Monte Carlo simulation 3.PAD response 4.PAD response for two tracks 5.Summary &
Beijing, Feb.6, 2007 P. Colas - Micromegas TPC 1 Micromegas TPC studies in a 5 Tesla magnetic field with a resistive readout D. Attié, A. Bellerive, K.
Development of a TPC for the Future Linear Collider on behalf of the LC TPC groups Aachen, Berkeley, Carleton, Cracow, DESY, Hamburg, Karlsruhe, MIT, Montreal,
June 22, 2009 P. Colas - Analysis meeting 1 D. Attié, P. Colas, M. Dixit, Yun-Ha Shin (Carleton and Saclay) Analysis of Micromegas Large Prototype data.
Study of GEM Structures for a TPC Readout M. Killenberg, S. Lotze, J. Mnich, A. Münnich, S. Roth, M. Weber RWTH Aachen October 2003.
29/09/2010 1Wenxin.Wang_EUDET annual workshop D. Attié, P. Colas, M. Dixit, M. Riallot, YunHa Shin, S. Turnbull, W. Wang and all the LC-TPC collaboration.
Phone meeting, December 20, 2005P. Colas - Resolution in BOS Micromegas TPC1 Resolution from the 1mm pads of the Berkeley-Orsay-Saclay Micromegas TPC Reminder:
IHEP, Beijing 9th ACFA ILC Physics and Detector Workshop & ILC GDE Meeting The preliminary results of MPGD-based TPC performance at KEK beam.
A TPC for ILC CEA/Irfu, Apero, D S Bhattacharya, 19th June Deb Sankar Bhattacharya D.Attie, P.Colas, S. Ganjour,
2/9/04 1 LBNL LC-TPC Activities ● International LC-TPC R&D ● Physics and Detector Simulations ● Micromegas-based TPC R&D ● US-Japan TPC R&D Proposal ●
Snowmass, August, 2005P. Colas - InGrid1 M. Chefdeville a, P. Colas b, Y. Giomataris b, H. van der Graaf a, E.H.M.Heijne c, S.van der Putten a, C. Salm.
TPC Studies at University of Victoria ALCPG meeting SLAC, January 2004 Dean Karlen University of Victoria / TRIUMF.
Wenxin Wang 105/04/2013. L: 4.7m  : 3.6m Design for an ILD TPC in progress: Each endplate: 80 modules with 8000 pads Spatial Resolution (in a B=3.5T.
A. SarratTPC jamboree, Aachen, 14/03/07 1 Full Monte Carlo of a TPC equipped with Micromegas Antony Sarrat CEA Saclay, Dapnia Motivation Simulation content.
January 10, 2008MiPGD TPC resolution and gas1 Micromegas TPC addendum on measurements P. Colas, Saclay Lectures at the TPC school, Tsinghua University,
Electron Transmission Measurement of GEM Gate Hirotoshi KUROIWA (Saga Univ.) Collaboration with KEK, TUAT, Kogakuin U, Kinki U, Saga U Introduction Motivation.
On behalf of the LCTPC collaboration VCI13, February 12th, 2013 Large Prototype TPC using Micro-Pattern Gaseous Detectors  David Attié 
Yulan Li, Tsinghua Uni. TILC08, 3-6 March, 2008, Sendai, Japan Performance Study of TU-TPC Prototype Using Cosmic-ray  Tsinghua University TPC group 
Astrophysics Detector Workshop – Nice – November 18 th, David Attié — on behalf of the LC-TPC Collaboration — Beam test of the.
D. Attié, P. Colas, E. Delagnes, M. Riallot M. Dixit, J.-P. Martin, S. Bhattacharya, S. Mukhopadhyay Linear Collider Power Distribution & Pulsing Workshop.
Result of MWPC-TPC beam test ILC Detector Workshop 3-5 March 2005, KEK Osamu Nitoh, TUAT.
A. SarratILC TPC meeting, DESY, 15/02/06 Simulation Of a TPC For T2K Near Detector Using Geant 4 Antony Sarrat CEA Saclay, Dapnia.
Endplate meeting – September 13, Gas issues for a Micromegas TPC for the Future Linear Collider David Attié D. Burke; P. Colas;
Wenxin Wang (D. Attié, P. Colas, E. Delagnes, Yuanning Gao, Bitao Hu, Bo Li, Yulan Li, M. Riallot, Xiaodong Zhang)
KEK Beam Test Results Resistive Foil Canada, France, Germany, Japan, Philippines KEK, TUAT Tokyo Univ., Hiroshima Univ., Kogakuin Univ., Kinki Univ., Japan.
Durham, Sep 3, 2004P. Colas - Micromegas TPC1 Micromegas TPC Berkeley-Orsay-Saclay Progress Report Reminder: the Berkeley-Orsay- Saclay cosmic setupReminder:
On behalf of the LCTPC collaboration -Uwe Renz- University of Freiburg Albert-Ludwigs- University Freiburg Physics Department.
Gaseous Tracker R&D ILC Detector Test Beam Workshop Fermi National Accelerator Laboratory January 17-19, Madhu Dixit Carleton University & TRIUMF.
Vienna Conference on Instrumentation – February 27, D. Attié, A. Bellerive, K. Boudjemline, P. Colas, M. Dixit, A. Giganon,
Studies on the Drift Properties and Spatial Resolution Using a Micromegas-equipped TPC Philippines Japan Germany Canada France Asia High Energy Accelerator.
GEM TPC Resolution from Charge Dispersion*
Large Prototype TPC using Micro-Pattern Gaseous Detectors
Power pulsing of AFTER in magnetic field
Micromegas module for ILC-TPC
Recents Analysis Results From Micromegas TPC
Prototype TPC Field cage maximum drift length: 260 mm
MWPC’s, GEM’s or Micromegas for AD transfer and experimental lines
Large TPCs for HEP RD51 P. Colas Lanzhou U., Saclay, Tsinghua U.
Gain measurements of Chromium GEM foils
Presentation transcript:

Micromegas TPC Beam Test Result H.Kuroiwa (Hiroshima Univ.) Collaboration with Saclay, Orsay, Carlton, MPI, DESY, MSU, KEK, Tsukuba U, TUAT, Kogakuin U, Kinki U, Saga U Motivation Micromegas TPC Setup Preliminary Results Summary The 8 th ACFA Workshop on Physics and Detector at the Linear Collider Jul. 12, 2005, EXCO, Daegu, Korea

Motivation Comparison of several sensors using same Field Cage, Electronics, analysis – MWPC : Beam test in Jun, 2004 – GEM : Beam test in Apr, 2005 – Micromegas Beam test in Jun. 22 ~ Jul. 1, 2005 We try to understand Micromegas TPC performance Previous talk

Micromegas Micromesh supported by μm - high insulating pillars Multiplication takes place between the anode and the mesh One stage Direct detection of avalanche electrons – Small E×B effect – Fast signals – Self-suppression of positive ion feedback the ions return to the grid – Better spatial resolution – No wire angular effect 50μm S1 S2 

TPC Length of FC : 26 cm Pad – 2×6 mm, 0.3mm gap – 32 pads×12 pad rows ⇒ 384 readout channels – Non-staggered – Pad plane : 10×10cm Readout –ALEPH TPC electronics 24 amplifiers, 16 channels each 500ns shaping time, charge sensitive sampled every 80 ns digitized by 6 TPDs

Mesh Signals There is a 55 Fe source attached on the back of the cathode plane to monitor Micromegas stability by looking at mesh signals (Readout by a multi channel analyzer MCA 8000 from Amptek) 55 Fe 6keV Escape 3keV Ar + 5%isobutane

Experimental Setup KEK-PS π2 beam line – 4GeV π - Super conducting magnet (JACEE) – B = 0, 0.5 and 1T Gas – Ar + isobutane (95:5) v d = 4.18cm/μsec at 220V/cm

Preliminary Results Charge Distribution Pad Response X Resolution Z Resolution Analysis –Double fit (developed at DESY)

Charge Distribution Charge distribution (B = 1T) – For 12 rows charge distribution at Row6 as a function of Z We saw no significant attenuation Edge effect

Pad Response Function is evaluated by a normalized charge (NQ i = Q i /∑Q) on pad i, as a function of (X pad - X track ) anodeZ → cathode Charge width for different drift regions (B = 0T) Distribution becomes wider at longer drift distance

B = 0T B = 0.5T B = 1T Measured C D in good agreement with Mag. Simulation Width of PRF as a function of Z Preliminary results

X Resolution as a function of Z C d fixed for each B Row6 + Row7 C d = C d (PRF) Preliminary results

X Resolution (How to Fit?) σ 0 : resolution w/o diffusion C d : diffusion constant N eff : effective number of electrons DiffusionOther 1- fix C d from PRF 2- fit σ x = f(z) with σ 0 and N eff free 3- Plot Magboltz curve with : σ 0 obtained from the fit (2) C d is known N eff from (2)

Z Resolution as a function of Z σ z ⋍ 500μm at 0.5T B = 0T B = 1T B = 0.5T Unlike σ X, σ Z has no significant B-dependence Preliminary results

Summary To measure Micromegas TPC performance – We did the beam test at KEK-PS π2 beam line using 4GeV neg. pions in magnetic field – Micromegas in TPC worked stably Measured diffusion constants are consistent with Mag. simulation σ x ⋍ 200μm, σ z ⋍ 800μm at 1T – But these results are still very preliminary