Virtual Memory Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University.

Slides:



Advertisements
Similar presentations
Virtual Memory 1 Computer Organization II © McQuain Virtual Memory Use main memory as a cache for secondary (disk) storage – Managed jointly.
Advertisements

Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
1 Lecture 13: Cache and Virtual Memroy Review Cache optimization approaches, cache miss classification, Adapted from UCB CS252 S01.
Virtual Memory main memory can act as a cache for secondary storage motivation: Allow programs to use more memory that there is available transparent to.
Computer Organization CS224 Fall 2012 Lesson 44. Virtual Memory  Use main memory as a “cache” for secondary (disk) storage l Managed jointly by CPU hardware.
Lecture 34: Chapter 5 Today’s topic –Virtual Memories 1.
CSIE30300 Computer Architecture Unit 10: Virtual Memory Hsin-Chou Chi [Adapted from material by and
Virtual Memory Hardware Support
Caching IV Andreas Klappenecker CPSC321 Computer Architecture.
Memory/Storage Architecture Lab Computer Architecture Virtual Memory.
The Memory Hierarchy (Lectures #24) ECE 445 – Computer Organization The slides included herein were taken from the materials accompanying Computer Organization.
CSCE 212 Chapter 7 Memory Hierarchy Instructor: Jason D. Bakos.
S.1 Review: The Memory Hierarchy Increasing distance from the processor in access time L1$ L2$ Main Memory Secondary Memory Processor (Relative) size of.
Translation Buffers (TLB’s)
©UCB CS 162 Ch 7: Virtual Memory LECTURE 13 Instructor: L.N. Bhuyan
1 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: –value is stored as a charge.
1  1998 Morgan Kaufmann Publishers Chapter Seven Large and Fast: Exploiting Memory Hierarchy (Part II)
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
Lecture 33: Chapter 5 Today’s topic –Cache Replacement Algorithms –Multi-level Caches –Virtual Memories 1.
Lecture 19: Virtual Memory
Lecture 15: Virtual Memory EEN 312: Processors: Hardware, Software, and Interfacing Department of Electrical and Computer Engineering Spring 2014, Dr.
CS 224 Spring 2011 Chapter 5B Computer Organization CS224 Chapter 5B: Exploiting the Memory Hierarchy, Part 2 Spring 2011 With thanks to M.J. Irwin, D.
CPE432 Chapter 5A.1Dr. W. Abu-Sufah, UJ Chapter 5B:Virtual Memory Adapted from Slides by Prof. Mary Jane Irwin, Penn State University Read Section 5.4,
July 30, 2001Systems Architecture II1 Systems Architecture II (CS ) Lecture 8: Exploiting Memory Hierarchy: Virtual Memory * Jeremy R. Johnson Monday.
The Memory Hierarchy 21/05/2009Lecture 32_CA&O_Engr Umbreen Sabir.
Virtual Memory Expanding Memory Multiple Concurrent Processes.
Caltech CS184b Winter DeHon 1 CS184b: Computer Architecture [Single Threaded Architecture: abstractions, quantification, and optimizations] Day14:
Morgan Kaufmann Publishers
1 Some Real Problem  What if a program needs more memory than the machine has? —even if individual programs fit in memory, how can we run multiple programs?
CS2100 Computer Organisation Cache II (AY2010/2011) Semester 2.
Computer Organization CS224 Fall 2012 Lessons 45 & 46.
Multilevel Caches Microprocessors are getting faster and including a small high speed cache on the same chip.
1 Chapter Seven CACHE MEMORY AND VIRTUAL MEMORY. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4.
1  2004 Morgan Kaufmann Publishers Chapter Seven Memory Hierarchy-3 by Patterson.
CS2100 Computer Organisation Virtual Memory – Own reading only (AY2015/6) Semester 1.
Virtual Memory Ch. 8 & 9 Silberschatz Operating Systems Book.
Protection of Processes Security and privacy of data is challenging currently. Protecting information – Not limited to hardware. – Depends on innovation.
LECTURE 12 Virtual Memory. VIRTUAL MEMORY Just as a cache can provide fast, easy access to recently-used code and data, main memory acts as a “cache”
1 Chapter Seven. 2 SRAM: –value is stored on a pair of inverting gates –very fast but takes up more space than DRAM (4 to 6 transistors) DRAM: –value.
Virtual Memory 1 Computer Organization II © McQuain Virtual Memory Use main memory as a “cache” for secondary (disk) storage – Managed jointly.
Chapter 7 Large and Fast: Exploiting Memory Hierarchy.
CS161 – Design and Architecture of Computer
ECE232: Hardware Organization and Design
Memory COMPUTER ARCHITECTURE
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
CS161 – Design and Architecture of Computer
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
CS352H: Computer Systems Architecture
Lecture 12 Virtual Memory.
Virtual Memory Use main memory as a “cache” for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs share main.
Morgan Kaufmann Publishers
Morgan Kaufmann Publishers
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
Morgan Kaufmann Publishers Large and Fast: Exploiting Memory Hierarchy
COSC121: Computer Systems. Managing Memory
Chapter 4 Large and Fast: Exploiting Memory Hierarchy Part 2 Virtual Memory 박능수.
ECE 445 – Computer Organization
Morgan Kaufmann Publishers Memory Hierarchy: Virtual Memory
Translation Buffers (TLB’s)
Translation Buffers (TLB’s)
CSC3050 – Computer Architecture
Computer Architecture
Virtual Memory Lecture notes from MKP and S. Yalamanchili.
Translation Buffers (TLBs)
Virtual Memory Use main memory as a “cache” for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs share main.
Virtual Memory.
Review What are the advantages/disadvantages of pages versus segments?
Presentation transcript:

Virtual Memory Lecture for CPSC 5155 Edward Bosworth, Ph.D. Computer Science Department Columbus State University

Precise Definition of Virtual Memory Virtual memory is a mechanism for translating logical addresses (as issued by an executing program) into actual physical memory addresses. This definition alone provides a great advantage to an Operating System, which can then allocate processes to distinct physical memory locations according to some optimization.

Common Definition of Virtual Memory Virtual memory allows the program to have a logical address space much larger than the computers physical address space. It maps logical addresses onto physical addresses and moves “pages” of memory between disk and main memory to keep the program running. Virtual memory facilitates time-sharing. A number of programs can use the same logical addresses that are mapped to distinct physical memory addresses.

Memory Overlays The memory overlay approach is an older, and now obsolete, approach to memory management. As in one of the uses of virtual memory, the overlay approach addressed the possibility that a program would require more memory resources than a given computer could provide. The overlay system was completely managed by the programmer, with very little assistance from the operating system.

Memory Overlay Scenario

Memory Overlay Example

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 7 Virtual Memory Use main memory as a “cache” for secondary (disk) storage Managed jointly by CPU hardware and the operating system (OS) Programs share main memory Each gets a private virtual address space holding its frequently used code and data Protected from other programs CPU and OS translate virtual addresses to physical addresses VM “block” is called a page VM translation “miss” is called a page fault §5.4 Virtual Memory

Memory Locality Illustrated At left is a trace of memory use by a program. Note that the addresses tend to cluster and then move on. This is locality.

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 9 Address Translation Fixed-size pages (e.g., 4K)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 10 Page Fault Penalty On page fault, the page must be fetched from disk Takes millions of clock cycles Handled by OS code Try to minimize page fault rate Fully associative placement Smart replacement algorithms

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 11 Page Tables Stores placement information Array of page table entries, indexed by virtual page number Page table register in CPU points to page table in physical memory If page is present in memory PTE stores the physical page number Plus other status bits (referenced, dirty, …) If page is not present PTE can refer to location in swap space on disk

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 12 Translation Using a Page Table

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 13 Mapping Pages to Storage

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 14 Replacement and Writes To reduce page fault rate, prefer least- recently used (LRU) replacement Reference bit (aka use bit) in PTE set to 1 on access to page Periodically cleared to 0 by OS A page with reference bit = 0 has not been used recently Disk writes take millions of cycles Block at once, not individual locations Write through is impractical Use write-back Dirty bit in PTE set when page is written

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 15 Fast Translation Using a TLB Address translation would appear to require extra memory references One to access the PTE Then the actual memory access But access to page tables has good locality So use a fast cache of PTEs within the CPU Called a Translation Look-aside Buffer (TLB) Typical: 16–512 PTEs, 0.5–1 cycle for hit, 10–100 cycles for miss, 0.01%–1% miss rate Misses could be handled by hardware or software

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 16 Fast Translation Using a TLB

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 17 TLB Misses If page is in memory Load the PTE from memory and retry Could be handled in hardware Can get complex for more complicated page table structures Or in software Raise a special exception, with optimized handler If page is not in memory (page fault) OS handles fetching the page and updating the page table Then restart the faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 18 TLB Miss Handler TLB miss indicates Page present, but PTE not in TLB Page not preset Must recognize TLB miss before destination register overwritten Raise exception Handler copies PTE from memory to TLB Then restarts instruction If page not present, page fault will occur

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 19 Page Fault Handler Use faulting virtual address to find PTE Locate page on disk Choose page to replace If dirty, write to disk first Read page into memory and update page table Make process runnable again Restart from faulting instruction

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 20 TLB and Cache Interaction If cache tag uses physical address Need to translate before cache lookup Alternative: use virtual address tag Complications due to aliasing Different virtual addresses for shared physical address

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 21 2-Level TLB Organization Intel NehalemAMD Opteron X4 Virtual addr48 bits Physical addr44 bits48 bits Page size4KB, 2/4MB L1 TLB (per core) L1 I-TLB: 128 entries for small pages, 7 per thread (2×) for large pages L1 D-TLB: 64 entries for small pages, 32 for large pages Both 4-way, LRU replacement L1 I-TLB: 48 entries L1 D-TLB: 48 entries Both fully associative, LRU replacement L2 TLB (per core) Single L2 TLB: 512 entries 4-way, LRU replacement L2 I-TLB: 512 entries L2 D-TLB: 512 entries Both 4-way, round-robin LRU TLB missesHandled in hardware

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 22 Memory Protection Different tasks can share parts of their virtual address spaces But need to protect against errant access Requires OS assistance Hardware support for OS protection Privileged supervisor mode (aka kernel mode) Privileged instructions Page tables and other state information only accessible in supervisor mode System call exception (e.g., syscall in MIPS)

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 23 The Memory Hierarchy Common principles apply at all levels of the memory hierarchy Based on notions of caching At each level in the hierarchy Block placement Finding a block Replacement on a miss Write policy §5.5 A Common Framework for Memory Hierarchies The BIG Picture

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 24 Block Placement Determined by associativity Direct mapped (1-way associative) One choice for placement n-way set associative n choices within a set Fully associative Any location Higher associativity reduces miss rate Increases complexity, cost, and access time

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 25 Finding a Block Hardware caches Reduce comparisons to reduce cost Virtual memory Full table lookup makes full associativity feasible Benefit in reduced miss rate AssociativityLocation methodTag comparisons Direct mappedIndex1 n-way set associative Set index, then search entries within the set n Fully associativeSearch all entries#entries Full lookup table0

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 26 Replacement Choice of entry to replace on a miss Least recently used (LRU) Complex and costly hardware for high associativity Random Close to LRU, easier to implement Virtual memory LRU approximation with hardware support

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 27 Write Policy Write-through Update both upper and lower levels Simplifies replacement, but may require write buffer Write-back Update upper level only Update lower level when block is replaced Need to keep more state Virtual memory Only write-back is feasible, given disk write latency

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 28 Sources of Misses Compulsory misses (aka cold start misses) First access to a block Capacity misses Due to finite cache size A replaced block is later accessed again Conflict misses (aka collision misses) In a non-fully associative cache Due to competition for entries in a set Would not occur in a fully associative cache of the same total size

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 29 Virtual Machines Host computer emulates guest operating system and machine resources Improved isolation of multiple guests Avoids security and reliability problems Aids sharing of resources Virtualization has some performance impact Feasible with modern high-performance comptuers Examples IBM VM/370 (1970s technology!) VMWare Microsoft Virtual PC §5.6 Virtual Machines

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 30 Virtual Machine Monitor Maps virtual resources to physical resources Memory, I/O devices, CPUs Guest code runs on native machine in user mode Traps to VMM on privileged instructions and access to protected resources Guest OS may be different from host OS VMM handles real I/O devices Emulates generic virtual I/O devices for guest

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 31 Example: Timer Virtualization In native machine, on timer interrupt OS suspends current process, handles interrupt, selects and resumes next process With Virtual Machine Monitor VMM suspends current VM, handles interrupt, selects and resumes next VM If a VM requires timer interrupts VMM emulates a virtual timer Emulates interrupt for VM when physical timer interrupt occurs

Chapter 5 — Large and Fast: Exploiting Memory Hierarchy — 32 Instruction Set Support User and System modes Privileged instructions only available in system mode Trap to system if executed in user mode All physical resources only accessible using privileged instructions Including page tables, interrupt controls, I/O registers Renaissance of virtualization support Current ISAs (e.g., x86) adapting