Zagreb, Croatia, 2015/04/20 Csörgő, T. 1 New exact solutions of hydrodynamcs and search for the QCD Critical Point T. Csörgő 1,2 with I.Barna 1 and M.

Slides:



Advertisements
Similar presentations
Duke University Chiho NONAKA in Collaboration with Masayuki Asakawa (Kyoto University) Hydrodynamical Evolution near the QCD Critical End Point November,
Advertisements

Duke University Chiho NONAKA in Collaboration with Masayuki Asakawa (Kyoto University) Hydrodynamical Evolution near the QCD Critical End Point June 26,
1Erice 2012, Roy A. Lacey, Stony Brook University.
Julia VelkovskaMoriond QCD, March 27, 2015 Geometry and Collective Behavior in Small Systems from PHENIX Julia Velkovska for the PHENIX Collaboration Moriond.
DNP03, Tucson, Oct 29, Kai Schweda Lawrence Berkeley National Laboratory for the STAR collaboration Hadron Yields, Hadrochemistry, and Hadronization.
A. ISMD 2003, Cracow Indication for RHIC M. Csanád, T. Csörgő, B. Lörstad and A. Ster (Budapest & Lund) Buda-Lund hydro fits to.
Properties of the Quantum Fluid at RHIC Strangeness in Quark Matter March 26-31, 2006.
XXXIII International Symposium on Multiparticle Dynamics, September 7, 2003 Kraków, Poland Manuel Calderón de la Barca Sánchez STAR Collaboration Review.
The Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences Cracow, Poland Based on paper M.Ch., W. Florkowski nucl-th/ Characteristic.
WWND, San Diego1 Scaling Characteristics of Azimuthal Anisotropy at RHIC Michael Issah SUNY Stony Brook for the PHENIX Collaboration.
Viscous hydrodynamics DPF 2009 Huichao Song The Ohio State University Supported by DOE 07/30/2009 July 27-July 31, Detroit, MI with shear and bulk viscosity.
Behind QGP Investigating the matter of the early Universe Investigating the matter of the early Universe Is the form of this matter Quark Gluon Plasma?
Sept WPCF-2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev Based on: Yu.S., I. Karpenko,
Nonequilibrium Dynamics in Astrophysics and Material Science YITP, Kyoto, Japan, Oct. 31-Nov. 3, 2011 Tetsufumi Hirano Sophia Univ./the Univ. of Tokyo.
Flow Vorticity and Rotation in Peripheral HIC Dujuan Wang CBCOS, Wuhan, 11/05/2014 University of Bergen, Norway.
Máté Csanád, Imre Májer Eötvös University Budapest WPCF 2011, Tokyo.
KROMĚŘĺŽ, August 2005WPCF Evolution of observables in hydro- and kinetic models of A+A collisions Yu. Sinyukov, BITP, Kiev.
Λ Polarization in an Exact rotating and expanding model for peripheral heavy ion reactions Yilong Xie NorSAC-2015 Department of Physics and Technology,
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Longitudinal de-correlation of anisotropic flow in Pb+Pb collisions Victor Roy ITP Goethe University Frankfurt In collaboration with L-G Pang, G-Y Qin,
Two particle correlation method to Detect rotation in HIC Dujuan Wang University of Bergen Supervisor: Laszlo P. Csernai.
1 Roy Lacey ( for the PHENIX Collaboration ) Nuclear Chemistry Group Stony Brook University PHENIX Measurements of 3D Emission Source Functions in Au+Au.
STRING PERCOLATION AND THE GLASMA C.Pajares Dept Particle Physics and IGFAE University Santiago de Compostela CERN The first heavy ion collisions at the.
Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I. Nagy 1,3 1 MTA Wigner Research Center.
Jaipur February 2008 Quark Matter 2008 Initial conditions and space-time scales in relativistic heavy ion collisions Yu. Sinyukov, BITP, Kiev (with participation.
T BB Hadronic matter Quark-Gluon Plasma Chiral symmetry broken Chiral symmetry restored Early universe A new view and on the QCD phase diagram Recent.
Study of the QCD Phase Structure through High Energy Heavy Ion Collisions Bedanga Mohanty National Institute of Science Education and Research (NISER)
Conical Flow induced by Quenched QCD Jets Jorge Casalderrey-Solana, Edward Shuryak and Derek Teaney, hep- ph/ SUNY Stony Brook.
T. Zimányi'75, Budapest, 2007/7/2 1 T. Csörgő, M. Csanád and Y. Hama MTA KFKI RMKI, Budapest, Hungary ELTE University, Budapest, Hungary USP,
Relativistic Hydrodynamics T. Csörgő (KFKI RMKI Budapest) new solutions with ellipsoidal symmetry Fireball hydrodynamics: Simple models work well at SPS.
T. KSU, USA, 2009/01/23 1 Csörgő, Tamás MTA KFKI RMKI, Budapest, Hungary High temperature superfluidity in Introduction: “RHIC Serves.
Zimányi Winter School, 2013/12/05 Csörgő, T. 1 Observables and initial conditions from exact rotational hydro solutions T. Csörgő 1, I. Barna 1 and M.I.
Joint CATHIE/TECHQM Workshop, BNL, Dec 14-18, 2009 Huichao Song The Ohio State University Supported by DOE 12/14/2009 Lawrence Berkeley National Lab QGP.
2+1 Relativistic hydrodynamics for heavy-ion collisions Mikołaj Chojnacki IFJ PAN NZ41.
LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions.
T. NN2006, Rio de Janeiro, 2006/8/31 1 T. Csörgő MTA KFKI RMKI, Budapest, Hungary Correlation Signatures of a Second Order QCD Phase Transition.
Does HBT interferometry probe thermalization? Clément Gombeaud, Tuomas Lappi and J-Y Ollitrault IPhT Saclay WPCF 2009, CERN, October 16, 2009.
Partial thermalization, a key ingredient of the HBT Puzzle Clément Gombeaud CEA/Saclay-CNRS Quark-Matter 09, April 09.
Masashi Kaneta, First joint Meeting of the Nuclear Physics Divisions of APS and JPS 1 / Masashi Kaneta LBNL
M. Csanád, T. Csörg ő, M.I. Nagy New analytic results in hydrodynamics UTILIZING THE FLUID NATURE OF QGP M. Csanád, T. Csörg ő, M. I. Nagy ELTE.
T. WPCF’06, Sao Paulo, 2006/9/10 1 T. Csörgő, M. Csanád and M. Nagy MTA KFKI RMKI, Budapest, Hungary Anomalous diffusion of pions at RHIC Introduction:
Csanád Máté 1 Experimental and Theoretical Investigation of Heavy Ion Collisions at RHIC Máté Csanád (ELTE, Budapest, Hungary) Why heavy ion physics –
T. Csörgő 1,2 Scaling properties of elliptic flow in nearly perfect fluids 1 MTA KFKI RMKI, Budapest, Hungary 2 Department of.
WPCF-2005, Kromirez A. Ster Hungary 1 Comparison of emission functions in h+p, p+p, d+A, A+B reactions A. Ster 1,2, T. Csörgő 2 1 KFKI-RMKI, 2 KFKI-MFA,
Heavy-Ion Physics - Hydrodynamic Approach Introduction Hydrodynamic aspect Observables explained Recombination model Summary 전남대 이강석 HIM
R. Lednicky: Joint Institute for Nuclear Research, Dubna, Russia I.P. Lokhtin, A.M. Snigirev, L.V. Malinina: Moscow State University, Institute of Nuclear.
Roy A. Lacey, Stony Brook, ISMD, Kromĕříž, Roy A. Lacey What do we learn from Correlation measurements at RHIC.
Budapest, 4-9 August 2005Quark Matter 2005 HBT search for new states of matter in A+A collisions Yu. Sinyukov, BITP, Kiev Based on the paper S.V. Akkelin,
Zimányi Winter School, ELTE, 6/12/ Csörgő T. Review of the first results from the RHIC Beam Energy Scan Csörgő, Tamás Wigner Research Centre for.
PhD student at the International PhD Studies Institute of Nuclear Physics PAN Institute of Nuclear Physics PAN Department of Theory of Structure of Matter.
Understanding the rapidity dependence of v 2 and HBT at RHIC M. Csanád (Eötvös University, Budapest) WPCF 2005 August 15-17, Kromeriz.
Andras. Ster, RMKI, Hungary ZIMANYI-SCHOOL’09, Budapest, 01/12/ Azimuthally Sensitive Buda-Lund Hydrodynamic Model and Fits to Spectra, Elliptic.
Particle emission in hydrodynamic picture of ultra-relativistic heavy ion collisions Yu. Karpenko Bogolyubov Institute for Theoretical Physics and Kiev.
Squaw Valley, Feb. 2013, Roy A. Lacey, Stony Brook University Take home message  The scaling (p T, ε, R, ∆L, etc) properties of azimuthal anisotropy.
T. Csörgő 1,2 for the PHENIX Collaboration Femtoscopic results in Au+Au & p+p from PHENIX at RHIC 1 MTA KFKI RMKI, Budapest,
PHENIX Results from the RHIC Beam Energy Scan Brett Fadem for the PHENIX Collaboration Winter Workshop on Nuclear Dynamics 2016.
1 Roy A. Lacey, Stony Brook University; ICFP 2012, June, Crete, Greece Essential Question  Do recent measurements at RHIC & the LHC, give new insights.
A generalized Buda-Lund model M. Csanád, T. Csörgő and B. Lörstad (Budapest & Lund) Buda-Lund model for ellipsoidally symmetric systems and it’s comparison.
Soft physics in PbPb at the LHC Hadron Collider Physics 2011 P. Kuijer ALICECMSATLAS Necessarily incomplete.
What do the scaling characteristics of elliptic flow reveal about the properties of the matter at RHIC ? Michael Issah Stony Brook University for the PHENIX.
Fluctuations, Instabilities and Collective Dynamics L. P. Csernai 1 and H. Stöcker 2 1 Institute of Physics and Technology, University of Bergen, Allegaten.
A. Ster A. Ster 1, T. Csörgő 1,2, M. Csanád 3, B. Lörstad 4, B. Tomasik 5 Oscillating HBT radii and the time evolution of the source 200 GeV Au+Au data.
Elliptic flow from initial states of fast nuclei. A.B. Kaidalov ITEP, Moscow (based on papers with K.Boreskov and O.Kancheli) K.Boreskov and O.Kancheli)
WPCF 2015, Warsaw, 2015/11/06 Csörgő, T. for Nagy, M 1 Observables and initial conditions for rotating and expanding fireballs T. Csörgő 1,2, I.Barna 1.
Review of ALICE Experiments
Hydro + Cascade Model at RHIC
New solutions of fireball hydrodynamics with shear and bulk viscosity
Collective Dynamics at RHIC
Outline First of all, there’s too much data!! BRAHMS PHOBOS PHENIX
Dipartimento Interateneo di Fisica, Bari (Italy)
Presentation transcript:

Zagreb, Croatia, 2015/04/20 Csörgő, T. 1 New exact solutions of hydrodynamcs and search for the QCD Critical Point T. Csörgő 1,2 with I.Barna 1 and M. I. Nagy 3 1 Wigner Research Center for Physics, Budapest, Hungary 2 KRF, Gyöngyös, Hungary 2 ELTE, Budapest, Hungary Introduction Introduction Perfect fluid solutions Non-relativistic hydro equations Rotating fluids Theoretical predictions, the QCD Critical End Point Recent experimental results Rotating fluids for QCD CEP Summary

Zagreb, Croatia, 2015/04/20 Csörgő, T. 2 Motivation: initial angular momentum Motivation: initial angular momentum Conserved quantities: important in heavy ion collisions also. Example from L. Cifarelli, L.P. Csernai, H. Stöcker, EPN 43/22 (2012) p. 91

Zagreb, Croatia, 2015/04/20 Csörgő, T. 3 Hydrodynamics: basic equations Hydrodynamics: basic equations Basic equations of non-rel hydrodynamics: Euler equation needs to be modified for lattice QCD EoS: no „n”. Use basic thermodynamical relations for lack of conserved charge (baryon free region)

Zagreb, Croatia, 2015/04/20 Csörgő, T. 4 Rewrite for v, T and (n, or  ) Rewrite for v, T and (n, or  ) lattice QCD EoS: modification of the dynamical equations:

Zagreb, Croatia, 2015/04/20 Csörgő, T. 5 Ansatz for rotation and scaling Ansatz for rotation and scaling The case without rotation: known self-similar solutions T. Cs, hep-ph/ S. V. Akkelin, T. Cs et al, hep-ph/ … Let’s add ω ≠0, let’s rotate! First good news: scaling variable remains good → a hope to find ellipsoidal rotating solutions!

Zagreb, Croatia, 2015/04/20 Csörgő, T. 6 See Cs. T and M. I. Nagy, arXiv: , PRC89 (2014) 4, arXiv: From self-similarity Ellipsoidal ->spheroidal time dependence of R and  coupled Conservation law! Common properties of solutions Common properties of solutions

Zagreb, Croatia, 2015/04/20 Csörgő, T. 7 Solutions for conserved particle n Solutions for conserved particle n T. Cs. and M.I. Nagy, arXiv: , PRC89 (2014) 4, arXiv: Similar to irrotational case: Family of self-similar solutions, T profile free T. Cs, hep-ph/ hep-ph/ but: rotation leads to increased transverse acceleration!

Zagreb, Croatia, 2015/04/20 Csörgő, T. 8 Role of temperature profiles Role of temperature profiles

Zagreb, Croatia, 2015/04/20 Csörgő, T. 9 1B: conserved n, T dependent e/p 1B: conserved n, T dependent e/p Rotation: increases the transverse acceleration. Only if T is T(t): Gaussian density profiles! But, a more general EoS, similar to T. Cs. et al, hep-ph/

Zagreb, Croatia, 2015/04/20 Csörgő, T. 10 n=0, lattice QCD type EoS n=0, lattice QCD type EoS Two different class of solutions: p/e = const  arbitrary  profile or p/e = f(T)  Gaussian  profile only Notes: increased acceleration (no n vs conserved n)

Zagreb, Croatia, 2015/04/20 Csörgő, T. 11 First integrals: Hamiltonian motion First integrals: Hamiltonian motion 1A: n is conserved 2A: n is not conseerved Angular momentum conserved Energy in rotation → 0

Zagreb, Croatia, 2015/04/20 Csörgő, T. 12 Summary so far: rotating solutions Summary so far: rotating solutions New and rotating exact solutions of fireball hydro Also for lattice QCD family of EoS Now analyzed in detail (after 53 years) Important observation: Rotation leads to stronger radial expansion lQCD EoS leads to stronger radial expansion Perhaps connected to large radial flows in RHIC and LHC data Observables: Next slides arXiv: arXiv: (v2)

Zagreb, Croatia, 2015/04/20 Csörgő, T. 13 Observables from rotating solutions Observables from rotating solutions Note: (r’, k’) in fireball frame rotated wrt lab frame (r,k) Note: in this talk, rotation in the (X,Z) impact parameter plane !

Zagreb, Croatia, 2015/04/20 Csörgő, T. 14 Role of EoS on acceleration Role of EoS on acceleration Lattice QCD type Eos is explosive Tilt angle  integrates rotation in (X,Z) plane: sensitive to EoS!

Zagreb, Croatia, 2015/04/20 Csörgő, T. 15 Single particle spectra Single particle spectra In the rest frame of the fireball: Rotation increases effective temperatures both in the longitudinal and impact parameter direction in addition to Hubble flows lQCD EoS: observables calculable if ~ n (Landau freeze-out)

Zagreb, Croatia, 2015/04/20 Csörgő, T. 16 Directed, elliptic and other flows Directed, elliptic and other flows Note: model is fully analytic As of now, only X = Z = R(t) spheroidal solutions are found → vanishing odd order flows at y=0 For fluctuations, see: M. Csanád and A. Szabó, Phys.Rev. C90 (2014) 5, From particle spectra → flow coefficents v n

Zagreb, Croatia, 2015/04/20 Csörgő, T. 17 Reminder: Universal w scaling of v 2 Reminder: Universal w scaling of v 2 Rotation does not change v2 scaling, but it modifies radial flow Black line: Buda-Lund prediction from 2003 nucl-th/ Comparision with data: nucl-th/ v 2 data depend on: particle mass m, centrality %, energy √s, rapidity y, p t

Zagreb, Croatia, 2015/04/20 Csörgő, T. 18 Details of universal w scaling of v 2 nucl-th/

Zagreb, Croatia, 2015/04/20 Csörgő, T. 19 HBT radii for rotating spheroids HBT radii for rotating spheroids New terms with blue → Rotation decreases HBT radii similarly to Hubble flow. Diagonal Gaussians in natural frame

Zagreb, Croatia, 2015/04/20 Csörgő, T. 20 HBT radii in the lab frame HBT radii in the lab frame HBT radii without flow But spheriodal symmetry of the solution Makes several cross terms vanish → need for ellipsoidal solutions

Zagreb, Croatia, 2015/04/20 Csörgő, T. 21 HBT radii in the lab frame HBT radii in the lab frame HBT radii without ω: spheriodal symmetry of the hydro solution  several cross terms vanish  need for ellipsoidal solutions HBT for ω, X=Y=R:

Zagreb, Croatia, 2015/04/20 Csörgő, T. 22 Rotating 3d ellipsoid X Y Z Rotating 3d ellipsoid X ≠ Y ≠ Z

Zagreb, Croatia, 2015/04/20 Csörgő, T. 23 Scaling variables for X Y Z Scaling variables for X ≠ Y ≠ Z First good news: scaling variable remains good, Ds = 0: → a hope to find rotating 3d ellipsoidal solutions, too!

Zagreb, Croatia, 2015/04/20 Csörgő, T. 24 Solution for X Y Z Solution for X ≠ Y ≠ Z First 3d ellipsoidal exact hydro solution: lQCD EoS can be co-variad with the initial condition → hadronic final state may be the same

Zagreb, Croatia, 2015/04/20 Csörgő, T. 25 Single particle spectra Single particle spectra Expectation for tilted sources: tilted elliptical specra ~ OK, but:

Zagreb, Croatia, 2015/04/20 Csörgő, T. 26 Directed, elliptic and other flows Directed, elliptic and other flows From the single particle spectra → flow coefficents v n

Zagreb, Croatia, 2015/04/20 Csörgő, T. 27 HBT radii in the lab frame HBT radii in the lab frame HBT radii without ω: spheriodal symmetry of the hydro solution  several cross terms vanish  need for ellipsoidal solutions HBT for ω, X=Y=R:

Zagreb, Croatia, 2015/04/20 Csörgő, T. 28 Qualitatively rotation and flow similar Qualitatively rotation and flow similar Need for more time dependent calculations and less academic studies (relativistic solutions)

Zagreb, Croatia, 2015/04/20 Csörgő, T. 29 Critical End Point from lQCD Critical End Point from lQCD Z. Fodor, S.D. Katz, T E = 160 ± 3.5 MeV µ B = 725 ± 35 MeV JHEP 0203 (2002) 014 Z. Fodor, S.D. Katz, T E = 162 ± 2 MeV µ B = 360 ± 40 MeV JHEP 0404 (2004) 050

Zagreb, Croatia, 2015/04/20 Csörgő, T. 30 Critical End Point from Critical End Point from PHENIX: A.Adare et al, arXiv: arXiv: Non-monotonic behaviour  CEP is close?

Zagreb, Croatia, 2015/04/20 Csörgő, T. 31 Critical End Point from Critical End Point from R.Lacey Non-monotonic behaviour  CEP is at T E ~ 165 MeV µ B,E ~ 95 MeV Errors =? Phys.Rev.Lett. 114 (2015) 14, Rotation will help…

Zagreb, Croatia, 2015/04/20 Csörgő, T. 32 Observables calculated Effects of rotation and flow Combine and have same mass dependence Spectra: slope increases v 2 : universal w scaling remains valid HBT radii: Decrease with mass intensifies Even for spherical expansions: v 2 from rotation. Picture: vulcano How to detect the rotation? Next step: penetrating probes (with Dubravko Klabucar & Zagreb) Summary for hydro solutions

Zagreb, Croatia, 2015/04/20 Csörgő, T. 33 Summary for hydro solutions Observables calculated Effects of rotation and flow Combine and have same mass dependence Spectra: slope increases v 2 : universal w scaling remains valid HBT radii: Decrease with mass intensifies Even for spherical expansions: v 2 from rotation. Picture: vulcano How to detect the rotation? Next step: penetrating probes (with Dubravko Klabucar & Zagreb)