Intro. House Senate Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet.

Slides:



Advertisements
Similar presentations
Introduction. November 2002 Good News House Senate.
Advertisements

Jan. 19, 2005GlueX/Exotics 2005 GlueX: Search for Gluonic Excitations at JLab Dr. David Lawrence Jefferson Lab Dr. David Lawrence Jefferson Lab.
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
An initial study of mesons and baryons containing strange quarks with GlueX 12 GeV electrons 40% lin. Pol. Uncollimated Collimated Coherent Peak GlueX.
The charmonium mass spectrum
Nuclear Physics UConn Mentor Connection Mariel Tader.
The Physics of GlueX Curtis A. Meyer Carnegie Mellon University.
Spectroscopy of Heavy Quarkonia Holger Stöck University of Florida Representing the CLEO Collaboration 6 th International Conference on Hyperons, Charm.
Hadron 2007, Frascati October 11, The GlueX Project at Jefferson Lab Zisis Papandreou GlueX Collaboration University of Regina, Canada G. Bali.
Elton S. Smith University of Virginia October 25, Overview Bremsstrahlung Tagging Spectrometer and Photon Beam Review Elton S. Smith Jefferson Lab.
1 Measurement of f D + via D +   + Sheldon Stone, Syracuse University  D o D o, D o  K -  + K-K- K+K+ ++  K-K- K+K+ “I charm you, by my once-commended.
Department of Physics and Astronomy
Photoproduction and Gluonic Excitations Meson 2002.
Hadron Physics with polarized photons at 9 GeV with GlueX Richard Jones University of Connecticut UConn Physics Graduate Studies Open House, Mar. 19, 2010.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Measurement of B (D + →μ + ν μ ) and the Pseudoscalar Decay Constant f D at CLEO István Dankó Rensselaer Polytechnic Institute representing the CLEO Collaboration.
The Jefferson Lab Hall D Project Curtis A. Meyer Carnegie Mellon University SLAC Seminar, 10 January, 2002 The Search for QCD Exotics and.
Introduction Alex R. Dzierba Indiana University Spokesman Hall D Collaboration Searching for Gluonic Excitations and the JLab 12 GeV Upgrade The Hall D.
The GlueX Experiment Curtis A. Meyer Carnegie Mellon University The GlueX Collaboration 8/23/10 1 GlueX Experiment 12 GeV electrons 40% lin. Pol. Uncollimated.
The GlueX Experiment in Hall-D
Experiment HUGS 2011 – Jefferson Laboratory Hussein Al Ghoul Department Of Physics Florida State University ᵠ.
20 October, 2004GlueX Detector Review 1 The GlueX Detector Curtis A. Meyer This talk Next talk.
A coherent gamma source the GlueX experiment the Hall D photon beam the requirements for diamonds Richard Jones, University of Connecticut presented by.
1. Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet bound states held.
GlueX/Hall-D Physics Curtis A. Meyer Carnegie Mellon University JLab Users Group Meeting, June 7,2010.
QCD Exotics at BNL and JLab Curtis A. Meyer Carnegie Mellon University.
Spectroscopy: Experimental Status and Prospects Curtis A. Meyer Carnegie Mellon University.
Amplitude Analysis in GlueX Curtis A. Meyer Carnegie Mellon University.
Recoil Polarimetry in Meson Photoproduction at MAMI Mark Sikora, Derek Glazier, Dan Watts School of Physics, University of Edinburgh, UK Introduction The.
Elton S. Smith MESON2012 May 31 – June 5, GlueX: Photoproduction of Hybrid Mesons Elton S. Smith, Jefferson Lab for the GlueX Collaboration 12th.
Meson spectroscopy with photo- and electro-production Curtis A. Meyer Carnegie Mellon University.
Seema Dhamija for the GLUEX collaboration Florida International University Seema Dhamija QNP09, IHEP, Beijing – 22/09/2009.
Crossed Channel Compton Scattering Michael Düren and George Serbanut, II. Phys. Institut, - some remarks on cross sections and background processes  
3/6/2008PHP March Photon-hadron physics with the GlueX detector at Jefferson Lab Curtis A. Meyer, Spokesperson GlueX CH L-2.
Graphic from poster by Sarah Lamb, UConn Honors Program event Frontiers in Undergraduate Research, April 2009 Collimator subtends
First Results of Curtis A. Meyer GlueX Spokesperson.
Detector for GlueX JLab PAC 23 Jan 20, 2003 Physics Beamline Hall D GlueX Detector Software Trigger Computing Environment PRL.
Hadron physics Hadron physics Challenges and Achievements Mikhail Bashkanov University of Edinburgh UK Nuclear Physics Summer School I.
Electronics play a critical role in modern accelerator physics experiments. Events will be recorded at a rate of 200,000/second. Modular electronics such.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
g/ JLab Users Group Meeting Curtis A. Meyer Poster.
Measurement of high lying nucleon resonances and search for missing state in double charged pion electroproduction off proton E.Golovach for the CLAS collaboration.
Latifa Elouadrhiri Jefferson Lab Hall B 12 GeV Upgrade Drift Chamber Review Jefferson Lab March 6- 8, 2007 CLAS12 Drift Chambers Simulation and Event Reconstruction.
October 2006GHP The GlueX Experiment Curtis A. Meyer CH L-2.
Hybrid Mesons and Spectroscopy Curtis A. Meyer Carnegie Mellon University Based on C.A. Meyer and Y. Van Haarlem, Phys. Rev. C82, (2010). Overview.
Status of Beam Asymmetry Measurements for Meson Photoproduction ASU Meson Physics Group Hadron Spectroscopy WG Meeting – June 2009 Status of Beam Asymmetry.
Overview - Alex Dzierba Hall D Calorimeter Review 1 Hall D/GlueX Calorimeter Review Overview and Physics Motivation Alex R. Dzierba Indiana U and Jefferson.
Forefront Issues in Meson Spectroscopy
Intro. Thank You to Jim Kellie and the group from the U of Glasgow for your kind hospitality.
CEBAF - Continuous Electron Beam Accelerator Facility.
The GlueX Detector in Hall-D at Jefferson Lab February 16, 2010 David Lawrence, Jefferson Lab (for Curtis A. Meyer, Carnegie Mellon University) July 7,
1. Progress Report Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet.
1. Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet bound states held.
Ibrahim H. Albayrak, Hampton University Group Meeting Experiment Rosen07: Measurement of R =  L /  T on Deuterium in the Nucleon Resonance Region. 
Elton S. Smith PaNic02, Sep 30 – Oct 4, Physics Prospects with the JLab 12 GeV Upgrade Elton S. Smith Jefferson Lab PANIC02 Osaka Gluonic Excitations.
July 10, 2006TAPS 2006 Experimental Hall-D and the GlueX Experiment at Jefferson Lab Dr. David Lawrence Jefferson Lab Dr. David Lawrence Jefferson Lab.
May 31, 2006 CIPANP Glueballs, Hybrids & Exotics Curtis A. Meyer Carnegie Mellon University May 31, 2006 An Experimental & Phenomenological Overview.
May 14, 2003 Curtis A. Meyer 1 Carnegie Mellon University May 14, 2003 An Experimental Overview of Gluonic Mesons.
1. Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet bound states held.
Exotics as a Probe of Confinement
Gluonic Hadrons: A Probe of Confinement
Masses, Forces, Higgs and Gluons
Richard Jones, University of Connecticut
Samples of Hall B Results with Strong Italian Impact
The 12 GeV Jlab Upgrade Project
The GlueX Experiment Curtis A. Meyer CH L-2 11/28/2018 CIPANP 2006.
The Hadron Spectrum and QCD
The 12 GeV Upgrade of the CEBAF Accelerator at Jefferson Lab
CMU Undergraduate Colloquium
The Program at Jefferson Lab
Presentation transcript:

Intro

House Senate

Science of Confinement The spectroscopy of light mesons led to the quark model and QCD: mesons are quark-antiquark color singlet bound states held together by gluons. Bound states involving gluons should exist – but solid experimental evidence is lacking. The gluons of QCD carry color charge and interact strongly (in contrast to the photons of QED). QED QCD

Science of Confinement The excitations of these flux tubes give rise to new hybrid mesons and their spectroscopy will provide the essential experimental data that will lead to an understanding of the confinement mechanism of QCD. A subset of these mesons - exotic hybrid mesons - have unique experimental signatures. Their spectrum has not yet been uncovered but there is strong reason to believe that photons are the ideal probe to map out the spectrum of this new form of matter. This is the goal of the GlueX Experiment The gluons are thought to form flux tubes which are responsible for confinement – flux tubes are predicted by both models and lattice QCD.

Normal Mesons – qq color singlet bound states Spin/angular momentum configurations & radial excitations generate our known spectrum of light quark mesons. Starting with u - d - s we expect to find mesons grouped in nonets - each characterized by a given J, P and C. J PC = 0 – – 0 + – 1 – – … Not-allowed: exotic J PC = 0 – – – 1 + – 2 ++ … Allowed combinations

Lattice Calculations Also Predict Flux Tubes From G. Bali: quenched QCD with heavy quarks

Exciting the Flux Tube Normal meson: flux tube in ground state Excite the flux tube: There are two degenerate first-excited transverse modes with J=1 – clockwise and counter-clockwise – and their linear combinations lead to J PC = 1 – + or J PC =1 + – for the excited flux-tube

Quantum Numbers for Hybrid Mesons Quarks Excited Flux Tube Hybrid Meson Exotic like So only parallel quark spins lead to exotic J PC

Hybrid Masses Lattice calculations nonet is the lightest UKQCD (97) 1.87  0.20 MILC (97) 1.97  0.30 MILC (99) 2.11  0.10 Lacock(99) 1.90  0.20 Mei(02) 2.01  0.10 ~2.0 GeV/c Splitting  GeV/c 2 mass difference (  /r) Hybrid mesons Normal mesons

Hybrid Candidates? Confirmed by VES More E852 3  data to be analyzed Confirmed by Crystal Barrel similar mass, width Being re-analyzed New results: No consistent B-W resonance interpretation for the P-wave In all E852 sightings the P-wave is small compared to a2. For CB P-wave and a2 similar in strength

Experiment E852 Used  Probes Exotic hybrids suppressed Extensive search with some evidence but a tiny part of the signal Quark spins anti-aligned

Exotic Hybrids Will Be Found More Easily in Photoproduction Production of exotic hybrids favored. Almost no data available There are strong indications from theory that photons will produce exotic hybrid mesons with relatively large cross sections. Quark spins already aligned

What is Needed?  PWA requires that the entire event be kinematically identified - all particles detected, measured and identified. It is also important that there be sensitivity to a wide variety of decay channels to test theoretical predictions for decay modes. The detector should be hermetic for neutral and charged particles, with excellent resolution and particle identification capability. The way to achieve this is with a solenoidal-based detector. Hermetic Detector:  Polarization is required by the PWA - linearly polarized photons are eigenstates of parity. Linearly Polarized, CW Photon Beam:  CW beam minimizes detector deadtime, permitting dramatically higher rates

What Photon Beam Energy is Needed? The mass reach of GlueX is up to about 2.5 GeV/c 2 so the photon energy must at least be 5.8 GeV. But the energy must be higher than this so that: 1. Mesons have enough boost so decay products are detected and measured with sufficient accuracy. 2. Line shape distortion for higher mass mesons is minimized. 3. Meson and baryon resonance regions are kinematically distinguishable. But the photon energy should be low enough so that: 1. An all solenoidal geometry (ideal for hermeticity) can still measure decay products with sufficient accuracy. 2. Background processes are minimized. 9 GeV photons ideal

What Electron Beam Characteristics Are Required? Coherent bremsstrahlung will be used to produce photons with linear polarization so the electron energy must be high enough to allow for a sufficiently high degree of polarization - which drops as the energy of the photons approaches the electron energy. In order to reduce incoherent bremsstrahlung background collimation will be employed using 20 µm thick diamond wafers as radiators. At least 12 GeV electrons Small spot size and superior emittance The detector must operate with minimum dead time Duty factor approaching 1 (CW Beam)

Upgrade Plan

flux photon energy (GeV) 12 GeV electrons Coherent Bremsstrahlung This technique provides requisite energy, flux and polarization collimated Incoherent & coherent spectrum tagged with 0.1% resolution 40% polarization in peak electrons in Linearly polarized photons out spectrometer diamond crystal

Detector

Channel count: FADC - 12k TDC - 8 k Slow - 10k Total - 30k

Collaboration Founded in 1998 Workshops (latest in May 2003) 4th Design Report Collaboration meetings Regular conference calls Management plan o Collaboration Board PAC12 Cassel Review APS/DNP Town Meeting NSAC LRP PAC23 Reviews History

Experiment/Theory Collaboration From the very start of the GlueX collaboration, theorists have worked closely with experimentalists on the design of the experiment, analysis issues and plans for extracting and interpreting physics from the data. The PWA formalism is being developed with the goal of understanding how to minimize biases and systematic errors due to dynamical uncertainties - e.g. overlap of meson and baryon resonance production. Lattice QCD and model calculations of the hybrid spectrum and decay modes will guide the experimental search priorities. The Lattice QCD group computers at JLab should move into the 10 Teraflop/year regime by in time to impact GlueX planning.

Solenoid & Lead Glass Array At SLAC Now at JLab Lead glass array Magnet arrives in Bloomington

The Site and Beamline Work at JLab on civil issues At Glasgow and U Connecticut, progress on diamond wafers

Barrel Calorimeter Barrel calorimeter prototype studies at U of Regina

Tracking R&D on central tracker at Carnegie Mellon Start Counter

Particle Identification TOF tests in Russia - Serpukhov Magnetic shielding studies Cerenkov counter

Electronics Electronics assembly robotics facility to be installed at IU in June PMT Bases: FADCs:

Expected Rates Start with GeV Tagged 30 cm target cross section = 120 µb low-rate high-rates: multiply by factor of 10

CLAS detector # of channels: 40k - fast 10k - slow Event Rate: 2 kHz 5.5kB/event Existing JLab detector - in a harsher environment

Computational Challenge GlueX will collect data at 100 MB/sec or 1 Petabyte/year - comparable to LHC-type experiments. GlueX will be able to make use of much of the infrastructure developed for the LHC including the multi-tier computer architecture and the seamless virtual data architecture of the Grid. To get the physics out of the data, GlueX relies entirely on an amplitude- based analysis - PWA – a challenge at the level necessary for GlueX. For example, visualization tools need to be designed and developed. Methods for fitting large data sets in parallel on processor farms need to be developed. Close collaboration with computer scientists has started and the collaboration is gaining experience with processor farms.

Physics Analysis Center GlueX and CLEO-c (Cornell) are collaborating on proposals to DOE and NSF ITR to fund physics analysis center to solve common problems: 1.Large datasets 2.Understanding PWA

AVIDD A 200-processor cluster at IU now being used to analyze E852 datasets 20X larger than published samples

Conclusions GlueX is poised to address a fundamental question: the nature of confinement - by mapping exotic hybrid mesons. The GlueX detector is state-of-the art but is far from pushing the envelope with regard to channel-count, radiation issues or data sets compared to existing or planned projects (BaBar, ATLAS, CMS). Issues and Questions re Electronics Is the approach as presented in our Design Report sound? Are we addressing the right issues in our R&D? Are our milestones realistic? Is our manpower adequate?

low-rate high-rate Rates

Trigger- Level Reduction needed

Trigger-Level 3

Backgrounds - Light shielding

Backgrounds - Heavy shielding

Rate tests